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Preface

In 1988, I took a class in Fuzzy Set theory from George Klir at Binghamton University-
SUNY. I had a deep background in Set Theory and thought Fuzzy Set Theory would
be a good niche subject. In 1992 as I was starting my thesis I owned just about every
major book on Fuzzy Set theory and they did not fill up even one bookshelf. It seemed
that it would be easy to keep up on all the literature and generate a lot of papers,
since it was obvious to me there was a lot of work to be done.

Then came the big success of the “killer app" — fuzzy control. Fuzzy control is a
major technology of the modern world, it pilots the space shuttle and its why Japanese
cars were smoother to drive.

Fuzzy Set Theory exploded, there are now sections of books on Fuzzy Set Theory
at bookstores like Borders and Barnes and Nobles. I was even hired at Creighton
University for my expertise in this subject, not my extensive backgrounds in modeling
and simulation, which I thought would be my strong point.

Why Fuzzy Set Theory

It is interesting to note that the area of research pursued by Lotfi Zadeh before
his creation of Fuzzy Set Theory was adaptive filters, the work which culminated in
the Kalman filter. The Kalman filter is an adaptive statistical method. To give an
simplistic illustration of an adaptive method, suppose that we know that the average
of ten grades is 85.3 and that a student receives a 88 on his eleventh test. It is easy to
show that we can find the new average of all eleven tests using the formula 85.3∗10+88

11
which shows that we don’t need the first ten values to compute the current average.
Similarly the Kalman filter constantly updates values used in filtering input data or
controlling a mechanical device.

Filtering input data, hearing a single voice say your name in a room full of conver-
sations, or controlling a mechanical device, driving a car, are skills that the human
brain is extremely good at. Computers, even with techniques such as Kalman filters
have difficulty with similar skills whenever the systems are complicated, such as con-
tinuous speech recognition or controlling a helicopter’s flight. It would seem that this
dichotomy led Zadeh to develop a method that mirrors the way that humans think.
How do we think? Loosely yet powerfully.

Humans make statements to one another such as, “Can you get me the blue shirt?”
that are extremely vague. Its not a question, its a request or possibly an order.
The shirt requested may be any style of shirt, button-down, polo, t-shirt, short or
long sleeved. The shade of blue – royal, navy, sea, robin’s-egg, etc., is the vaguest
information of all. However, it is exactly these simple short vague statements that
demonstrate the enormous amount of information humans can convey to one another
with simple statements in their languages.
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Preface

Here is another example of the power of language; it is much easier to absorb the
basic ideas about a topic of interest by attending a lecture rather than reading a
book. A good lecture is adaptive in nature, the speaker can elucidate any sticking
points and gloss over portions that are in the audiences knowledge domain.

I recommend that initiates to fuzzy logic consult the FAQ for fuzzy logic is at:

http://www.cs.cmu.edu/Web/Groups/AI/html/faqs/ai/fuzzy/part1/faq.html
An example of the information contained there is the following.

[8] Isn’t ”fuzzy logic” an inherent contradiction? Why would anyone
want to fuzzify logic?

Date: 15-APR-93

Fuzzy sets and logic must be viewed as a formal mathematical theory for
the representation of uncertainty. Uncertainty is crucial for the manage-
ment of real systems: if you had to park your car PRECISELY in one place,
it would not be possible. Instead, you work within, say, 10 cm tolerances.
The presence of uncertainty is the price you pay for handling a complex
system.

Nevertheless, fuzzy logic is a mathematical formalism, and a membership
grade is a precise number. What’s crucial to realize is that fuzzy logic is a
logic OF fuzziness, not a logic which is ITSELF fuzzy. But that’s OK: just
as the laws of probability are not random, so the laws of fuzziness are not
vague.

No one has a problem understanding that probability deals with random phenom-
ena. This does not mean that probability theory is itself random. It is the theory of
random events. If it was called “random theory” would people think that its formulas
depended on the roll of a dice?

Yet the word fuzzy in fuzzy set theory provokes criticism! Fuzzy sets are a precise
mathematical tool. The represent information that may be subjective, inadequately
described or detailed, aggregated loosely, or ill-understood. We then use the tech-
niques of fuzzy sets/fuzzy logic to make whatever conclusions we can with this data.
These conclusions follow a determined mathematical course to a conclusion. How-
ever, the conclusions inherit the uncertainty of the premises, and this uncertainty
may aggregate, however, as in real life, it may be the best answer we can get.

The need for something like fuzzy set theory is indicated by the the large number of
systems that crisp (that is non-fuzzy) mathematical techniques have failed to provide
effective methods to deal with. We do not understand the economy, the weather,
human emotion, vision, and many other phenomena.

This book provides a fairly narrow trail through the cybernetic landscape. It does
not provide all the details of fuzzy sets and fuzzy logic. What it does do is give a fast
track to some of the most important fuzzy applications.
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Introduction

Consider a coin in your pocket. What is it worth? If the coin is a recently minted
quarter then it is probably worth face-value, 25¢. If this coin is older then it may
have greater monetary value to a collector. The value of the coin would then depend
upon its rarity and its condition.

Let us take the coin out of our pocket and consider its condition. Since it is in you
pocket we cannot classify the coin as uncirculated. If it is old it is likely to be worn
to some extent. Usually, one would consult an expert (a numismatist) who would
try to classify its condition. This classification is somewhat subjective, and can vary
between experts. That is because the act of classification, of assigning a tag to an
object, is fuzzy.

Fuzzy set theory is the study of just this type of uncertainty, fuzzy sets use numbers
to quantify the degree to which a property can be associated with an object. There
is nothing fuzzy about a fuzzy set just as there is nothing random about a probability
distribution. Suppose we are now looking at the uncertainty associated with the act
of flipping the coin. Suppose that it is stated that the probability distribution for the
flipping the coin event is p =

{
1
2 ,

1
2

}
for X = {H,T}. This statement says that the coin,

when flipped, turns up as either H = heads or T = tails. The probability statement
also contends that long term results of repeatedly flipping the coin produces a ratio
of heads to total flips that is about 1

2 and of tails to total flips that is also around 1
2 .

Probability theory is the study of random events. The numbers come from random
trials such as the flipping of a coin.

This is very nice information but it is totally irrelevant to the question, “What is
this coin worth?” We could poll many expert numismatists with random coins to de-
termine the probability that a coin is worth 2 ¢ but that would still not answer the
question, “What is this coin worth?”

Fuzzy set theory is the study of fuzzy events. A fuzzy event is one that is difficult
to classify, like the flavor of a apple. Fuzzy set theory is the study of vagueness. The
statement “We will meet this evening” is vague. This evening is not a specific time.
There is not any firm boundary between evening and night and this is the type of
uncertainty that a fuzzy set theory is constructed to represent and process.

If one asks a variety of experts, “On a scale of one to ten, to what degree do you
consider this coin as being in Good condition?” one might find that the average of the
experts opinion, divided by ten is 0.73. If one then asks the same group of experts,
“On a scale of one to ten, to what degree do you consider this coin as being in Fair
condition?” one might find that the average of the experts opinion, divided by ten
is 0.42. This kind of experiment can easily be carried out in real life. Note that
there is nothing random about the individual answers, repetition will tend to produce
identical results. Note also that the results do not need to sum up to one. Human
evaluation is often inexact, i.e., fuzzy. An expert could change his mind right in the
middle of a series of questions.
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Introduction

The bibliography references at the end of each chapter are not intended to be
comprehensive. The bibliography includes mostly references to the originators of
important theoretical ideas as well as the best books, in the authors opinion, to delve
deeper into the applications presented.
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Uncertainty
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1. Uncertainty

Uncertainty is a universal dilemma. Uncertainty intrudes into plans for the future,
interpretations of the past, and decisions in the present.

There are many kinds of uncertainty.
Suppose it is our task to study a Dead Sea Scroll. Let us consider some of the

uncertainties involved in the analysis of the scroll. These include:

1. the precise date of composition,

2. the author’s identity,

3. where was it composed,

4. the origin and composition of the ink and parchment,

5. reading the faded text, and

6. translating the original meaning.

1.1. Example of Different Types of Uncertainty in One Context

As another example, let us suppose that the label on our prescription of Piperol has
fallen off. We try to obtain some expert advice from various sources and arrive at the
following list Krause and Clark (1993).

Expert Prescribed Treatment

A 100mg, once every 12 hours

B 80mg-100mg, twice a day

C About 120mg, 2–3 times a day

D Likely to be 200mg twice a day

E 30mg? or 80mg? twice a day (the number is hard to read)

F 200mg 4 times a day or 100mg once a day

G 150mg

H At least 100mg, twice a day

I The usual dose for this drug is 100mg, twice a day

J 1g, twice a day

K Google it

L Never heard of that drug

M 1313 Mockingbird Lane

3



1. Uncertainty

1.1.1. What Types of Uncertainty?

Let us examine the types of uncertainty contained in each statement.

A 100mg, once every 12 hours

There is very little uncertainty in this statement. This is a precise prescription. The
quantity of Piperol to take is 100mg. We are to take it two times each day. There is
some uncertainty as to when the patient should take the first dose, maybe at 9AM?
But after that, every twelve hours the patient should take another dose. But the un-
certainty of the starting time is not part of the prescription, it is part of the execution.
It is difficult to implementation these instructions incorrectly.

B 80mg-100mg, twice a day

This is an imprecise statement because 80mg–100mg is an interval. Intervals are
inherently vague because the precise amount of the drug we need to take is not
specific. How are we to decide which value in the interval is the best value. This type
of instruction is common when the drug in question is available in different strengths
(dosages). It is up to the patient to ingest enough, but not too much, and to do that
twice each day.

C About 120mg, 2–3 times a day

We know how much of the drug to take but not the frequency. Note that 2–3 is not
an interval, we can take the dosage either twice or thrice a day, but not any value in
between. This is a fuzzy number. This type of prescription is common for painkillers.
Since a patients response to pain is very idiosyncratic, some patients will need more,
and other patients need less, of the drug to manage the pain.

D Likely to be 200mg twice a day

This is a statement of confidence. Most of the time Piperol is prescribed, it is for
Beamer’s Syndrome. The Physicians Handbook recommends 500mg twice for a pa-
tient diagnosed with Beamer’s Syndrome. However, sometimes Piperol is prescribed
for other ailments. In these cases the dosage varies greatly. Note that this anecdote
includes a dosage twice that of the previous instructions.

E 30mg? or 80mg? twice a day (the number is hard to read)

In this case it is hard to determine if the first digit is a 3 or an 8. The printing is
smudged. Here the expert tried for precision, but the medium of transmission has
failed to correctly convey the information to the patient. The result is ambiguity.

F 200mg 4 times a day or 100mg once a day

Here the alternatives are inconsistent. One would think that it would be the other
way around, 100mg twice a day or 200mg once a day, and that the expert misspoke.
Many drugs are powerful and taking too much or too little can be very dangerous.
The uncertainty here is very different from that of the previous example. The patient
can determine exactly what the instructions say to do, but those instructions appear
to be contradictory.
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1.2. Uncertainty Typology

G 150mg

Here we have incomplete information. A good prescription tells us every thing we
need to know. How much of the drug to take. How to take the drug. When to take
the drug. Do we take the drug with food? What things should we avoid when taking
the drug. In this case we know how much of the drug to take, but not the schedule.
Maybe we only need to take Piperol once, though this is unusual for most drugs.

H At least 100mg, twice a day

This is very imprecise. Is this a minimal dose? And if we take a minimal dose will it
be effective? What is the optimal dose? What is the maximum dose? The pills are
80mg each? Do the pills break into pieces easily? I hate doing math!

I The usual dose for this drug is 100mg, twice a day

The implied question is: “Does the patient have the usual disease?” This prescription
is a default rule, and this rule may or may not be relevant to the patients situation.
This information is too general.

J 1g, twice a day

Is this a typo? It is anomalous when compared to other responses on the list. It is
5 to 10 times as much of the drug as recommended by any of the previous experts.
Note that this prescription is precise, and if it were the only instructions available
we would have little reason to doubt it. It is only when we compare it to the other
prescriptions that we see that it is inconsistent.

K Google it

This may be good advice, in general, but an expert is suppose to provide an answer,
not a methodology. This expert avoids the question. This is incongruency. It is not
like any of the previous answers and, in fact, does not tell us what we need to know.
This is especially true since the Internet is not a reliable source.

L Never heard of that drug

Here we have an expert who, it turns out, is not really not an expert in the field. It
turns out that this expert is ignorant of the uses of the wonder drug Piperol.

M 1313 Mockingbird Lane

Here is answer that is completely irrelevant. Maybe the expert misheard the ques-
tion. Maybe they are an expert in TV trivia and not on drug usage. This is information
of doubtful utility.

1.2. Uncertainty Typology

In the previous section we examined data that possessed or displayed some of the fol-
lowing types of uncertainty: vague, fuzzy, confidence, ambiguity, inconsistent, incom-
plete, imprecise, general, anomalous, incongruent, ignorant, and irrelevant. While a
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1. Uncertainty

dictionary definition of uncertainty is unlikely to help us understand the aspects of
uncertainty, a good thesaurus can provide an interesting list of synonyms.

Thesaurus
Main Entry: uncertainty

Part of Speech: noun

Definition: doubt, changeableness

Synonyms: ambiguity, ambivalence, anxiety, bewilderment, con-
cern, confusion, conjecture, contingency, dilemma, dis-
quiet, distrust, doubtfulness, dubiety, guesswork, hes-
itancy, hesitation, incertitude, inconclusiveness, inde-
cision, irresolution, lack of confidence, misgiving, mis-
trust, mystification, oscillation, perplexity, puzzle, puz-
zlement, qualm, quandary, query, questionableness, re-
serve, scruple, skepticism, suspicion, trouble, uneasi-
ness, unpredictability, vagueness, wonder, worry

Antonyms: certainty, definiteness, security, sureness

Roget’s 21st Century Thesaurus, Third Edition
Copyright © 2010 by the Philip Lief Group.

The thesaurus contains synonyms that were examined in the examples above, like
ambiguity, while other synonyms, such as mystification, were not.

There certainly are a lot of different types of uncertainty. Maybe it would help
us if we could organize uncertainty into classifications. Certainly ambivalence and
oscillation are similar in nature, as are worry and anxiety.

Many people have tried to organize and classify the many types of uncertainty. The
typologies often reflect the focus of the investigator’s research. Let us take a quick
look at four viewpoints.

1.2.1. Typology of Morgan and Henrion – Risk management

Risk management is most prominent in economics (investing in stocks and bond is
always risky) and policy planning (how many fireman and police are needed to mini-
mize the risk of disaster). The typology of Morgan and Henrion Morgan and Henrion
(1990) (See Table 1.1) is especially useful as it contains aspects best dealt with prob-
abilistically (Random error and statistical variation) as well as aspects that are best
modeled with fuzzy set theory (Linguistic imprecision). Here is a brief explication of
the uncertainties in the Morgan and Henrion typology.

• Random error and statistical variation occurs whenever we measure something,
like the speed of a car.

• Systematic error and subjective judgment occur because the measurement de-
vices themselves are not perfect, and are not always used correctly.

6



1.2. Uncertainty Typology

1 Random error and statistical variation

2 Systematic error and subjective judgment
3 Linguistic imprecision
4 Variability
5 Randomness and unpredictability
6 Expert Uncertainty
7 Approximation
8 Model uncertainty

Table 1.1.: Morgan and Henrion

• Linguistic imprecision occurs when we say the car is fast, what velocity is fast?

• Variability in a population is common, seemingly identical cars will not perform
exactly the same on a speedway.

• Randomness and unpredictability are seen when a car fails to live to go as fast
as it was designed to go.

• Expert Uncertainty is seen when a car is rated by consumer websites, which
often give disparate valuations to the same model car.

• Approximation occurs when we round a velocity to the nearest mile per hour.

• Model uncertainty occurs when we model a cars expected lifetime based on test
results.

1.2.2. Smithson Typology–Behavioral Science

Smithson’s typology Smithson (1989, 1990) comes from the behavioral sciences. In it
(See Figure (1.1)) ignorance is the root and uncertainty is just one of many problems
in planning for future disasters. Personally, I think it is missing a branch for Stupidity.

1.2.3. Klir Typology – General Systems

In the latter half of the 20th century computer technology impacted every area of
technology. One of the most important results of computer technology was the recog-
nition of the inherent similarity of many different systems. For example, plumb-
ing houses very similar to wiring up chips on a circuit board . Houses and apart-
ments correspond to chips and resistors. Wires correspond to pipes, and there are
rules to ensure minimal cost, adequate capacity, and separation (to prevent interfer-
ence/contamination).

The development of measures of uncertainty in mathematical systems has been a
major component of Klir’s research Klir and Wierman (1998). This has led him to
classify uncertainty into two major categories, fuzziness, which deals with informa-
tion that is indistinct, and ambiguity, which deals with multiplicity. In the first case
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1. Uncertainty

Figure 1.1.: Smithson’s Typology.

the telescope sees one object, but does not have the resolution to determine its iden-
tity. In the second case the telescope sees multiple objects, and what we see does
not allow us to identify precisely the object we were seeking. See Figure (1.2).

1.2.3.1. Potocan, Mulej and Kajzer Typology–Cybernetics

Cybernetics concerns the study of regulatory systems. Common examples of regula-
tory systems are cruise control in cars, and auto-focus in cameras.

Potocan, Mulej, and Kajzer apply cybernetics and system theory to business sys-
tems. It is interesting that their result are presented very differently from Smithson
or Klir’s, which are presented as tree structures. Instead we have eight aspects of
uncertainty, and a system can contain any or all of these characteristics. There is
much overlap between Potocan, Mulej, and Kajzer’s system with the types of un-
certainty previously discussed. However, Pocotan, Mulej and Kajzer introduce some
interesting new aspects, like the difference between natural and artificial systems, or
the difference between open and closed systems. A spaceship is a closed system that
tries to provide a natural environment. Samurai warriors were part of an artificial
system which was closed to outsiders.

1.3. Conclusions

There are many types of uncertainty, so it should not be any surprise that there are
many different mathematical systems that have been developed to calculate uncer-
tainties. For the purpose of this book, the following are the most important mathe-
matical models of uncertainty.
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1.3. Conclusions

Figure 1.2.: Klir

Figure 1.3.: Pocotan.
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1. Uncertainty

1. Set theory

2. Probability theory

3. Logic

4. Fuzzy set theory

5. Evidence theory

6. Rough set theory

The second chapter will cover set theory, and the third will provide a brief overview
of probability theory and statistics.

Homework
1. What are some of the uncertainties involved in the following quote?

I think the probability of the Bozo the Clown party winning the next elec-
tion is between 60 and 70% – Bozo the Clown

1. Use a thesaurus to find five synonyms for uncertainty not examined in Section
(1.1). Provide prescriptions that exemplify these synonyms. Explain these pre-
scriptions.

2. What is your primary field of study? Give five examples of the types of uncer-
tainty that commonly occur in your primary field of study. Explain your exam-
ples.

3. Use a thesaurus to provide a list of synonyms for uncertainty. Group all of these
synonyms into types. Explain your system of classification of uncertainty into
types.

4. What is the greatest uncertainty that you faced today? This year? In your life so
far?

5. What color pants will you wear tomorrow. Describe any uncertainties associated
with this prediction.

6. Without consulting any references, answer this question: “How much exercise
should you average?”

7. Discuss the uncertainty in a typical conundrum like

a) How long will the universe last?

b) Who will win the Superbowl this year?

c) What are you having for dinner today?

d) How many angels can dance on the head of a pin?
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2. Set Theory

2.1. Sets and uncertainty

The development of set theory and probability theory are intertwined. Early probabil-
ity theory often focused on games of chance. Probability theory developed methods
to answer questions like “what are the odds that I will draw to an inside strait in a
hand of poker.” In poker a straight is five cards in sequence. A poker player has a
straight draw when he has four out of the five cards of a sequence. If the missing
card is in the interior of the sequence then it is called inside straight draw. An exam-
ple is the poker hand consisting of 3♦, 4♣, 6♥, 7♠, and J♠. The players best strategy
is to discard the J♠ and hope for a five of any suit.

A typical poker hand is five cards out of a deck of 52 cards. A specific poker hand
is five cards such as 3♦, 4♣, 6♥, 7♠, and J♠. A poker hand is neither a number, nor
is it a geometric object. For thousands of years mathematics was concerned itself
primarily with numbers and with geometric objects. In addition, logic dealt with True
and False.

A specific poker hand is a sub-collection of five objects out of an larger collection
of 52 objects. In set theory the universal set, universe of discourse, or just universe,
is the collection of objects that is under discussion. All sets can contain any, none, or
all of the objects in that universe.

In terms of uncertainty, a universal set is a powerful mechanism. It puts specific
limits on what can be discussed, manipulated, and analyzed. If the universal set is a
standard deck of 52 cards then the 3♥ is admissible but the Joker is not admissible.
A universal set sharply limits ambiguity. It allows for the construction of many to one
relationships. For example, there are four cards in the deck that can fill the inside
straight in the above example, they are the 5♦, 5♣, 5♥, or 5♠.

2.2. Basics

Set theory is the foundation of all branches of modern mathematics. Even numbers
and geometric objects are seldom considered as basic or primitive concepts. In for-
mal mathematics they are defined as constructions of set theory.

Set theory is based on the notion of a class or collection of objects. The fundamental
concept of set theory is; given an object in the universe of discourse (the general
assemblage of things that a discussion is about), a set is well defined if one can
decide whether or not the given object is contained in the set. This simple notion was
one of the most powerful ideas ever conceived in the field of mathematics.

A set is a collection of objects called elements. Typographically the brackets “{”
and “}” are used to denote the beginning and ending of the list of elements that are
in the set.

11



2. Set Theory

A set is defined using one of three methodologies. In the first method the elements
of the set are explicitly listed, as in

A = {1, 3, 5, 7, 9} (2.1)

Here we have a set, tagged with the name or label A, and containing as elements the
objects one, three, five, seven, and nine. Symbolically the statement “5 is an element
of set A” is written 5 ∈ A. We can also say that 6 is not an element of A, or 6 /∈ A. Given
an object in the universe of discourse we can now compare it to the elements in the
list defining the set A. If there is a match then the object is in the set. If there is
no match then the element is not in the set. Conventionally capital letters represent
sets and small letters represent elements.

The second method for defining a set is implemented by giving a rule or property
that a potential element must obey or posses to be included in the set. An example
of this is the set

A = {odd numbers between zero and ten} (2.2)

This is the same set A that was defined explicitly by listing its elements in Eq. (2.1)
above. Both of these definitions presuppose the existence of an agreed upon universe
of discourse. This collection is called the universal set, it is the collection of objects
that are potential members of the sets under discussion. So far we have assumed
that the universe of discourse is the natural or counting numbers.

The universe or universal set is usually labeled X or U , although any symbol is al-
lowable. Very often the universal set is not explicitly given as part of the discussion.
Instead the universal set is to be inferred from the context of the problem under dis-
cussion. If the universe is one common to many fields it may have a standard symbol,
such as N for the natural numbers, Z for the integers or R for the real numbers.

The third way to determine a set is through a characteristic function. If χA is the
characteristic function of a set A then χA is a function from the universe of discourse
X to the set {0, 1}, where

χA(x) =

{
1 x ∈ A
0 x /∈ A (2.3)

so that the value 1 indicates membership and the value 0 indicates non–membership.
In the examples above where the set A is the set of odd natural numbers less than

ten then the characteristic function for this set is

χA(x) =

{
1 x = 1, 3, 5, 7, 9
0 otherwise

The traditional notation for a characteristic function uses the Greek letter χ or chi
and the set A is indicated as the subscript. However it is desirable for the purposes
of this text to introduce a notation that consider A as both the label of a set and as the
label of its characteristic function. Thus if A is a set, then its characteristic function
is indicated by

A(x) =

{
1 x ∈ A
0 x /∈ A (2.4)

The set B = {0, 1} is so important that we give it a special name, the Boole set,
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Name Symbol Set

Natural numbers N {1, 2, 3, . . .}
Bounded natural num-
bers

Nn {1, 2, 3, . . . , n− 1, n}

Non-negative integers N0 {0, 1, 2, 3, . . .}
Integers Z {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Rational numbers Q

{
a
b | a, b ∈ Z

}
Real numbers R any sequence of digits – pos-

sibly signed, possibly con-
taining a decimal point, and
possibly infinite

Positive real numbers R+ {x | x ∈ R and x > 0}

Table 2.1.: Common universal sets of numbers in mathematics.

named in honor of Georg Boole who was one of the most important figures in the
history of set theory.

A set A is contained in or equal to another set B, written A ⊆ B, if every element of
A is an element of B, that is, if x ∈ A implies that x ∈ B. If A is contained in B then A
is said to be a subset of B and B is said to be a superset of A.

Two sets are equal, symbolically A = B, if they contain exactly the same elements,
therefore if A ⊆ B and B ⊆ A then A = B.

If A ⊆ B and A is not equal to B then A is called a proper subset of B, written A ⊂ B.
The negation of each of these relations, expressed symbolically by a slash crossing
the operator, x /∈ A, A 6⊆ B, A 6= B and A 6⊂ B represent, respectively, x is not an
element of A, A is not a subset of B, A is not equal to B and A is not a proper subset
of B.

If we are talking about selecting a color for a new tablecloth then the universe is:
X = {x | x is a color} read “X equals the set of all elements x such that x is a color”
where x is an example element, or variable, that must have the property listed to be
contained in the set.

The intersection of two sets is a new set that contains every object that is an ele-
ment of both the set A and the set B.

Example 1. If A = {1, 3, 5, 7, 9} and B={1, 2, 3, 4, 5} then the intersection of set A and B
is the set C = A ∩ B = {1, 3, 5}, since only the natural numbers 1, 3 and 5 are in both
sets A and B.

The union of the two sets contains all the elements of either set A or set B.

Example 2. With A and B defined as in Example 1 above C = A∪B = {1, 2, 3, 4, 5, 7, 9}.
There is no sense in listing an element twice as {a} = {a, a} since both contain only
the single element “a”.

The complement of a set A, written Ac, is the set of all elements of the universe
that are not elements of A.

Example 3. Again with A as defined in Example 1 above and with the universal set
X = {1, 2, 3, 4, 5, 6, 7, 8, 9} then the complement of A is Ac = {2, 4, 6, 8}.

13
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The relative complement of a set A relative to B, written B \ A, is the set of all
elements of the set B that are not elements of A. This is also called set subtraction
and the notation B −A is often encountered.

Example 4. Again with A and B defined as in Example as defined in Example 1 above
then the relative complement of A by B is B −A = {7, 9}.

The symmetric difference of sets A and B, written A4 B, is the set of all elements
that are in only one of the two sets A and B . The notation A	B is also common.

Example 5. Again with A and B defined as in Example as defined in Example 1 above
then the symmetric difference of A and B is A4B = {2, 4, 7, 9}.

The simple framework of set theory allows the basic logical terms of the English
language such as “and”, “or” and “not” to be translated into precise mathematical
expressions. “And” is cast as intersection. “A and B” becomes the intersection of the
two sets: A ∩ B. “Or” is translated as union. “A or B” becomes the union of the set
A with set B: A ∪ B. Lastly the term “not” is rendered as the complement of the set
under discussion: “not A” is Ac. One last set operation is set difference. A \ B is the
set of all elements of A that are not elements of B.

All of the concepts of set theory can be recast in terms of the characteristic func-
tions of the sets involved. Take for an example the subset relation, where A is a
subset of B if and only if the characteristic grade of x in A is less than or equal to
the characteristic grade of x in B. In terms of characteristic functions we have that
A ⊆ B if and only if A(X) ≤ B(X) for all x ∈ X. Remember that we are using A(x) as a
shorthand for χA(x)T, the characteristic function of A. For the proper subset relation
we get strict inequality, A ⊂ B if and only if A(x) < B(x) for all x ∈ X. The phrase “for
all” occurs so often in set theory that a special symbol is used as an abbreviation, ∀
represents the phrase “for all”. Similarly the phrase “there exists” is abbreviated ∃.
The definition of set equality is now restated as A = B if and only if

∀x ∈ X A(x) = B(x). (2.5)

Intersection can also be defined in terms of characteristic functions. Define the
characteristic grade of x in the intersection of two sets A and B to be equal to the
minimum of the characteristic grade of x in A and of x in B, thus C = A∩B if and only
if

∀x ∈ X C(x) = min[A(x), B(x)]. (2.6)

For the union of two sets A and B, we have C = A ∪B if and only if

∀x ∈ X C(x) = max[A(x), B(x)]. (2.7)

Of course there are different ways to express these relations in terms of characteris-
tic values. The characteristic grade of x in the intersection of A and B is also equal
to the product of the characteristic grade of x in A and x in B.

Sets can be finite or infinite. The set of integer numbers is infinite, it goes on
without end in both the positive and negative directions. The set of integers is Z =
{· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }, where “· · · ”— the ellipsis, indicates that the values just go
on and on towards negative and positive infinity. A finite set is one that contains a
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finite number of elements. The size of a finite set, called its cardinality, is the number
of elements it contains. If A = {1, 3, 5, 7, 9} then the cardinality of A, usually written
|A|, is 5 since A contains five different elements.

A set may contain no elements, the set {} contains nothing. This empty set is given
a special name ∅, ∅ = {} and |∅| = 0. ∅ is the letter phi from the Greek alphabet.

A set can contain another set. Let D = {1, 2}. The set E = {{1, 2}, {1}, {2}, {}} contains
four elements, it contains the set D as an element. Another element of E is the set
{1}. The empty set, ∅, is an element of E. Note that D ∈ E but D * E, however both
∅ ∈ E and ∅ ⊆ E.

The set of all subsets of a given set X is called the power set of X. If X is finite
and |X| = n then the number of subsets of X is 2n. The power set of X is written P(X)
(sometimes the notation 2X is also used).

Since the next chapter will introduce the concept of a fuzzy set it is often useful to
be able to indicate that a set is a classical set and not a fuzzy set. We introduce the
term crisp to indicate that the set is classical, and specifically, has a characteristic
function that maps elements of the universe to the binary set {0, 1}.

2.3. Intervals

Two special classes of sets are used extensively in the following chapters of this book
(and in mathematics as a whole). The first class of sets are the bounded subsets of
the real numbers called intervals. The open interval (a, b) contains those real numbers
greater than a but less than b so that

(a, b) = {x ∈ R | a < x < b}

The closed interval [a, b] contains those values greater than or equal to a and less than
or equal to b,

[a, b] = {x ∈ R | a ≤ x ≤ b}

The half open (or half closed) intervals are denoted (a, b] = {x ∈ R | a < x ≤ b} and

[a, b) = {x | x ∈ R | a ≤ x < b}

Of special interest is unit interval I = [0, 1]. I contains all the real numbers greater
than or equal to zero and less than or equal to one.

The second class of sets are bounded subsets of natural numbers: Nn will designate
the natural numbers less than or equal to some given fixed natural number n. Thus

Nn = {x ∈ N | x ≤ n} .

For example N6 = {1, 2, 3, 4, 5, 6}.
The most import interval for fuzzy set theory is the unit interval I = [0, 1].
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2.4. Ordered pairs and relations

Everything in mathematics is defined with set theory as the basis. For example,
consider the concept of an ordered pair. The ordered pair is formed from two objects
x and y, where x ∈ X and y ∈ Y , and is denoted 〈x, y〉. The object x is the first element
of the ordered pair and the object y is the second element of the ordered pair.

The ordered pair is an excellent example of the use of set theory to create simple
definitions for the construction of complex objects. In set theory the ordered pair
〈x, y〉 is defined to be shorthand for {{x} , {x, y}}. The set {{x} , {x, y}} allows us to
know which object is the first element in the ordered pair 〈x, y〉. The first element
is the object that is contained in a set of size one in the set definition of an ordered
pair. Thus x is the first element of the ordered pair because |{x}| = 1. The second
element of the ordered pair is the object that is contained in the set of size two but is
not contained in the set of size one (unless x = y). Hence y is the second element of
the ordered pair because y ∈ {x, y} but y 6∈ {x}. Obviously 〈x, y〉 is much easier to both
write and understand than {{x} , {x, y}}. The full set notation is used only to prove that
an ordered pair can be defined via set theory and that the ordered pair so defined
has all the necessary properties. An example of a property that can be derived from
the definition of ordered pair is: 〈x, y〉 = 〈y, x〉 if and only if x = y.

The set of all ordered pairs where the first element is contained in a set X and the
second element is contained in a set Y is called the Cartesian product or set product
of X and Y and is designated X × Y .

Example 6. If X = {1, 2, 3} and Y = {a, b} then the Cartesian product of X and Y is
X × Y = {〈1, a〉,〈1, b〉,〈2, a〉,〈2, b〉,〈3, a〉,〈3, b〉}.

Note that the size of X×Y is the product of the size of X and the size of Y , |X×Y | =
|X| · |Y |. If either set X or Y is empty then the Cartesian product is empty.

Any subset of X × Y is called a relation between X and Y and is designated r(X,Y )
or just r. Thus a relation r between X and Y is simply a set of ordered pairs of
elements of X and Y . If 〈x, y〉 ∈ r then x is said to be related to y or, succinctly, x r y.
The in-line notation x r y is the most popular and readable, but is limited to binary
relations, which are the only kind we have introduced so far.

The most common relations in mathematics are the equal relation “=” which rep-
resents identical objects, and the order relations on the real numbers with the usual
representation less than <.

Example 7. Let X be the domain of men {Tom, Dick, Harry} and Y the domain
of women {Eve,Maria, Sally} then the relation “married to” on X × Y is, for example
{〈Tom, Sally〉 , 〈Dick,Maria〉 , 〈Harry,Eve〉}.

A relation from a set X to itself is called a relation on X and r ∈ X ×X.
For more on relations see 8 on page 121.

2.5. Functions

A function is a mathematical abstraction of a consistent machine. Every time you put
a specific object into this machine you get an identical product out of the machine.
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Figure 2.1.: A graph of the function f(x) = x2.

If a relation has a unique second element for each first element then it is called a
function. The set X is called the domain set and the set Y is called the range set.
A function is a relation and consequently it is also viewed fundamentally as a set of
ordered pairs. The restriction that the function have a unique second element for
each first element insures that if 〈x, y〉 and 〈x, z〉 are elements of a function (relation)
F then y = z. This ensures that the function, viewed as a machine, has consistent
behavior. A function is said to map a set X into a set Y .

Proposition 1. Every function is a relation. If f(x) = y then we can also say that x f y

Definition 1 (domain). The domain of a function f is the set of elements that are
mapped, i.e., the set X. Sometimes mathematicians fail to specify the domain and
assume the reader can infer the domain set from the context of the discussion.

Definition 2 (co–domain). The co–domain of a function f is the set of elements that
can be mapped to, i.e., the set Y.

Definition 3 (image). The image of a function f is the set of elements that are
mapped to, i.e., the subset of Y that are the functional values of the elements in
X. Sometimes mathematicians use the word range for image.

Usually lower case letters are used for functions. The notation f : X → Y is used to
denote the fact that the function f maps X into Y . Often a mapping rule alone is given
to define a function. For example the rule f(x) = x2 is a typical function. Its implied
domain set is the real numbers and its co–domain is also the real numbers. The set
of all values in the co–domain set that are mapped to by elements of the domain set
are called the image of the function f or I(f). The image of the function f(x) = x2

is the non-negative reals, symbolically R+. If I(f) = Y then the function f is called
onto. If every ordered pair that defines f is different in both the first and the second
element then the function is called one-to-one. A more mathematical way to say this
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is: if f(x) = y and f(z) = y implies x = z then f is one-to-one. If f is one-to-one and
onto then it is possible to define an inverse function f−1:Y → X such that f−1(y) = x if
and only if f(x) = y.

It is possible to define the inverse image of a function even if it is not one-to-one
and onto. In this case f−1(y) is defined to be the set of elements x that are mapped to
y by the function f or f−1(y) = {x | x ∈ X and f(x) = y}.

Example 8. IfX = {0, 1, 2, 3} and Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} then f = {〈0, 0〉 , 〈1, 1〉 , 〈2, 4〉 , 〈3, 9〉}
is a function. Note that the requirements that each x ∈ X is in some pair in f (f is on
X) and that each x is in only one pair in f are both satisfied.

Example 9. Let X be the closed interval [0, 3] and Y the closed interval [0, 9], and
f(x) = x2. Then the graph is given in Figure (2.1). A function is continuous if its
graph can be drawn with a pencil that never is lifted from the paper. This is not
precise mathematics but it gives a feel for what is important.

Other examples of functions are

f(x) = x2 − x− 2, (2.8)

f (x) = xmod 3, and (2.9)

f(x) =

{
x x ≥ 0
−x x < 0

. (2.10)

The last function is the absolute value function. It is an example of a function defined
for cases. The top row is the case where x is positive or zero, in this case the function
is equal to the input; the second row covers the case where x is negative, in this case
the function is equal to the negative of the input. Much of mathematics is focused
on the study of functions, as almost any college student who has endured calculus
knows. This book is also focused on functions, the kind of functions that map a
domain set into values that are greater–than or equal to zero and less–than or equal
to one. And rest assured that calculus is not needed much at all. There is a quick
refresher on the important concepts of calculus in A.1 on page 313.

Suppose that f and g are functions, f : X → Y and g : Y → Z. Our understanding of
functions is that f maps elements of set X to elements of set Y . The function g maps
elements of the set Y to elements of the set Z. We can then consider a composite
function of f and g that maps elements of X to elements of Z. This function h is
usually called the composition of f and g and will be denoted in this book h = f ◦ g.
We can also write that h(x) = f(g(x)).

2.6. Distances

One particular useful type of function is used to measure distances. Two examples
of distances are city–block and as the crow flies. A city–block distance takes into
account that we cannot walk through buildings, in fact, in a city, it is best that we
keep to the sidewalks. A crow, or more likely in a city, a pigeon, can fly in a direct
line from point A to point B.
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A function dist(A,B) that maps two variables A and B, both elements of the same
set X, into the non–negative real numbers is called a distance (between A and B),
provided that it verifies the following properties.

Positiveness dist(A,B) ≥ 0 and dist(A,B) = 0 if and only if A = B.

Symmetry dist(A,B) = dist(B,A).

Triangle Inequality dist(A,B) + dist(B,C) ≥ dist(A,C).

Let’s consider several examples.

Example 10 (scalar distance). X = R, the set of all real numbers. Then the scalar
distance is just

distH(a, b) = |a− b|,

where |x| is the absolute value of x.

Example 11 (Hamming). With X = R2 the Hamming distance is given by the formula

dist(〈x1, y1〉 , 〈x2, y2〉) = |x2 − x1|+ |y2 − y1|.

The Hamming distance is also called the city–block distance. If X = Rn then the
n-dimensional Hamming distance is given by

distH(x1,x2) =

n∑
i=1

|x2i − x1i| .

where x is an n-dimensional vector in Rn and n is a natural number. Note that if n = 1
then this is the scalar distance.

Example 12 (Euclidean distance). With X = R2 the Euclidean distance is given by
the well known formula

distE(〈x1, y1〉 , 〈x2, y2〉) =
√

(x2 − x1)2 + (y2 − y1)2

The the Euclidean distance is as the crow flies. If X = Rn then the n-dimensional
Euclidean distance is given by

distE(x1,x2) =

√√√√ n∑
i=1

(x2i − x1i)2.

where x is an n-dimensional vector in Rn and n is a natural number.

Example 13 (displacement). With X = R2 the maximum displacement distance is
given by

distD(〈x1, y1〉 , 〈x2, y2〉) = max{|x2− x1|, |y2− y1|}

This distance returns the size of the maximum dimension of of an object with corners
at 〈x1, y1〉 and 〈x2, y2〉.
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Example 14 (Minkowski distance). With X = Rn and p a natural number greater than
or equal to two, the Minkowski distance is given by the formula

distM (x1,x2) = p

√√√√ n∑
i=1

(x2i − x1i)p.

where x is an n-dimensional vector in Rn and n is a natural number.

2.7. Projections

Suppose we have a subset of a product set, C ⊆ Z = X × Y . Now every subset of a
product set is considered a relation. It is useful to have a notation for the projections
into the first and second dimension. The projection of set C into the first dimension
is the set of all x ∈ X such that x occurs as the first element of some ordered pair
〈x, y〉 that is contained in C;

proj1 (C) = {x | x ∈ X and ∃ y ∈ Y with 〈x, y〉 ∈ C} . (2.11)

The projection into Y, or into the second dimension is

proj2 (C) = {y | y ∈ Y and ∃x ∈ X with 〈x, y〉 ∈ C} . (2.12)

If A ⊆ X is a set then its cylindric extension to Z is the set A × Y . If B ⊆ Y is a
set then its cylindric extension to Z is the set X × B. If A ⊆ X and B ⊆ Y are both
sets in different dimensions (different universal sets) then their cylindric closure is
the intersection of their cylindric extensions. It is not hard to show that the cylindric
closure of A and B is A×B.

We can attempt to reconstruct C ⊆ X × Y from its projections by constructing its
cylindric closure but it is not hard to see that this set is not the original relation, but
that cylindric closure is larger. In effect, the cylindric closure fills in the “missing”
pieces.

C ⊆ proj1 (C)× proj2 (C) . (2.13)

Example 15. Let X = {1, 2, 3}, Y = {a, b, c} and C = {〈1, a〉 , 〈2, b〉}. Then

proj1 (C) = {1, 2} . (2.14)

and
proj2 (C) = {a, b} . (2.15)

Finally comparing C to its cylindric closure shows that

{〈1, a〉 , 〈2, b〉} = C ⊆ proj1 (C)× proj2 (C) = {〈1, a〉 , 〈2, a〉 , 〈1, b〉 , 〈2, b〉} (2.16)

.
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2.8. Extension

Let X and Y be non-empty universal sets. Let f : X → Y be a function from X into Y .
Let r be a relation between elements of X and elements of Y, that is r ⊆ X × Y .

Let G ⊆ X and H ⊆ Y . The standard extensions of the function f and relation r to
set arguments are

f(G) = {y | x ∈ G and y ∈ Y and f(x) = y} (2.17)

and
r(G) = {y | x ∈ G and y ∈ Y and x r y} (2.18)

It is traditional to use the same symbol for the function (relation) and its set extension
since the argument indicates which case applies. Note that these extensions are
now functions and relations on power sets of X and Y. That is f : P(X) → P(Y ) and
r ⊆ P(X)× P(Y ). We can also define formal inverses for f and r

f−1(y) = {x | x ∈ X and f(x) = y} (2.19)

and
r−1(y) = {x | x ∈ X and x r y} (2.20)

that are themselves naturally set valued. The extension of the function f and relation
r to set arguments are

f−1(H) = {x | x ∈ X and y ∈ H and f(x) = y} (2.21)

and
r−1(H) = {x | x ∈ X and y ∈ H and x r y} (2.22)

where f−1 : P(Y )→ P(X) and r−1 ⊆ P(Y )× P(X).

In the final analysis, we only needed to introduce the formulas for the extension
of relations, since functions are really special cases of relations. However, in math-
ematics, functions often play a larger role than relations, and so the extension of a
function is made explicit in formula 2.17.

2.9. Homework

Let us define the universal sets

X = {1, 2, 3, 4, 5, 6}, (2.23)

Y = {a, b, c}, (2.24)

and
Z = {α, β, γ, δ} . (2.25)
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Let

A = {1, 2},
B = {1, 3},
C = {2, 4, 6},
D = {a, b},
S = {〈1, a〉 , 〈2, b〉 , 〈3, b〉 , 〈2, c〉} and

T = {〈a, δ〉 , 〈b, γ〉 , 〈c, α〉} .

Given the above information, answer the following questions.

1. For the sets, A through T , what universe do they belong to?

2. What is Ac ?

3. What is Bc ?

4. What is Cc ?

5. What is A ∪B ?

6. What is A ∪ C ?

7. What is B ∪ C ?

8. What is A ∪Bc ?

9. What is A ∪ Cc ?

10. What is B ∪ Cc ?

11. What is A ∪Ac ?

12. What is A ∩B ?

13. What is A ∩ C ?

14. What is B ∩ C ?

15. What is A ∩Bc ?

16. What is A ∩ Cc ?

17. What is B ∩ Cc ?

18. What is A ∩Ac ?

19. What is A \B and B \A.

20. What is A \ C and C \A.

21. What is B \ C and C \B.

22. What is A4B.
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23. What is A4 C.

24. What is B 4 C .

25. What is A×B ?

26. What is A× C ?

27. What is A×D ?

28. What is D ×A ?

29. What is B × C ?

30. What is S ◦ T ?

31. What is the projection of T into Y ?

32. What is the projection of T into Z ?

33. What is the cross product of the projections in (31) and (32) ?
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3. Logic

3.1. Introduction

In ancient Greece, before the age of radios, TV, or iPods, entertainment consisted of
going down to the Acropolis, drinking wine, eating bread and cheese, and arguing.
About 350 BC, Aristotle noticed something interesting about these conversations.
Aristotle noticed that the pattern of an argument did not depend on the subject of
the argument.

For example, let us compare the two following arguments:

It is raining. Premise 1
If it rains the grass gets wet. Premise 2
The grass is wet. Conclusion

and

Aristotle is a man. Premise 1
All men are mortal. Premise 2
Aristotle is mortal. Conclusion

Here is the pattern Aristotle noticed, abstracted from the particular subject, and
using letters A and B to represent propositions, just like Aristotle did in his writings.

A Premise 1
if A then B Premise 2
B Conclusion

Aristotle called a logical deduction pattern a syllogism. We called this particular
pattern the modus ponens (Latin for the way that affirms).

The most important thing about logic is that it is designed to insure that when the
premises are true then the conclusion that is deduced must be true. If any of the
premises are false logic can not tell you anything about the truth or falsity of the
conclusions. Thus a logical conclusion eliminates uncertainty about the reasoning
process. You always have to be careful with logic though:

A ham sandwich is better than nothing. Premise 1
Nothing is better than complete happiness. Premise 2
A ham sandwich is better than complete
happiness.

Conclusion

Here, the problem is that in English, the word nothing has two different meanings
in the two Premises.
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A B A→ B

Row 1 0 0 1

Row 2 0 1 1

Row 3 1 0 0

Row 4 1 1 1

Table 3.1.: The truth table for the logical connective: implication.

3.2. Symbolic logic

Classical logic is a system designed to ensure that arguments reach correct con-
clusions. A logical system starts with a set of axiomatic assumptions, such as “two
points determine a line.” Axioms are assumed to be true. Logic then produces the-
orems which are guaranteed to be true as long as the axioms are true and do not
contradict themselves.

The problems with classical logic are mainly twofold. The first is determining what
should and should not be axioms, that is, what can we assume to be true. The second
problem is that logic, like mathematics, is abstract, and does not fully mirror the real
world. When I say “I will meet you at 1PM tomorrow” is this statement true or false?

Classical logic as a system was invented by Aristotle and his works on this subject
are collected in a book called the Organum. Aristotle uses letters of the alphabet to
stand for primitive objects that can be either true or false. Thus A might stand for the
fact that the apple is red. Aristotle presents rules for reasoning about these objects,
i.e., how to come to conclusions that are entailed by the axioms.

Modern symbolic logic originated at the turn of the 19th century when symbols
were introduced for the logical expressions. For example, the statement “If the apple
is red and the sky is blue then have a picnic” becomes A∧B → C where “∧” represents
logical conjunction (and) and “→” represents implication (if – then). Two types of logic
are of primary interest to us in this chapter. They are first and second order logics,
also called propositional and predicate logics. First order logic deals with Proposi-
tions that are either true or false, such as “The apple is red.” Second order logic
deals with Predicates such as “The object is red,” which is true or false depending on
what object we are talking about.

3.2.1. First order logic

Symbolic logic uses a set of symbols to produce expressions (called well formed for-
mulas or wffs) that have two possible values when evaluated. These values are called
true or false and are commonly represented mathematically with the numeric values 1
and 0. The symbols used include:
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3.2. Symbolic logic

Symbol English

¬ not

∧ and

∨ or

→ implies

3.2.2. Truth tables

We will focus for a while on what we mean by a logical conjunction or and with its
symbolic representation ∧. In English we would write “The sky is blue and the apple
is red.” In logic this would become A ∧ B. When we look at the sky it may be blue
or it may be grey. When we substitute A for this statement we have a propositional
variable which may be true or false. Similarly B represents the statement that the
apple is red which can also be true or false. In logic, the rule for and is; the and of A
and B is true only if both A and B are simultaneously true, otherwise the and of A and
B is false. The traditional method of presenting this rule was as a truth table:

A B A ∧B

Row 1 true true true

Row 2 true false false

Row 3 false true false

Row 4 false false false

Row 1 in this table is interpreted as saying if A is true and B is true then the con-
junction A ∧ B is true. Rows 2–3 capture the other three possibilities, where at least
one of A or B is false.

In the modern computer world, things are presented slightly differently. First off,
computers use numbers to represent everything (the letter A is represented by 65),
so we represent false with zero and truth with one. Since zero is less than one zero
comes first. Therefore the tables we will use, remembering that true ≡ 1 and false ≡ 0,
will look like:

A B A ∧B

Row 1 0 0 0

Row 2 0 1 0

Row 3 1 0 0

Row 4 1 1 1

This table presents the same information, the rules for conjunction, in a slightly
different form.
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The rule for disjunction, or or, is that A ∨ B is true if either side is true. Negation,
which operates on a single proposition, toggles the value from true to false and back
again. Implication has a truth table that needs some explanation.

3.2.2.1. Implication

Implication, if A then B, is modeled in classical logic with the arrow operator A → B.
The result of implication for every possible truth assignment is given in the Truth
Table (3.1).

Let us give a justification of the Table (3.1) due to Łukasiewicz. Consider the state-
ment about the natural numbers

if n is divisible by 6 then n is divisible by 3 . (3.1)

To any reasonable person this is a universally true statement about the natural num-
bers (the counting numbers, 1, 2, 3, . . . ). Let us examine it for a few numbers n. If n is
12 then the truth value of n is divisible by 6 is true as is the truth vale of n is divisible
by 3, so if truth then truth produces truth (row 4 of Table (3.1)). If n is 13 then the truth
value of n is divisible by 6 is false as is the truth vale of n is divisible by 3, so if false then
false produces truth (row 1 of Table (3.1)). If n is 15 then the truth value of n is divisible
by 6 is false but the truth vale of n is divisible by 3 is truth, so if false then truth produces
truth (row 2 of Table (3.1)). However it is impossible to produce a number n that will
generate row 3 of Table (3.1). That is because the statement is a universal truth.

The rules for all the most common connectives are presented in Table 3.2.

3.2.2.2. Compound sentences

Now we will consider a more complex logical expression:

¬B ∨A→ A ∧B (3.2)

Using Table 3.2 we can calculate the resultant truth value of a statement like Eq.
(3.2) for arbitrary true = 1 or false = 0 valuations of its atomic variables A, B, C, . . . .
In mathematics variables can represent complex expressions, The table applies to
anything of the form W → Q event though the table uses A and B. The table says that
if we have something of the form W → Q and that Q is false while W is true then we
can conclude that the whole statement W → Q is false. But W might represent ¬B ∨ A
and Q might represent B ∧A. In Eq. (3.2) the atomic variables A, B, and C represent
statements that can be true or false.

To calculate the truth values for more complicated statements, such as that in
Eq. 3.2 it is best to use a table format. In the table below we start by adding columns
for all the atomic variables in the statement. In this case the atomic variables are A
and B so we put these in the first two columns (second row), and label those columns
a and b (first row). We then write out the logical equation ¬B ∨A→ A ∧B giving each
individual symbol its own column. (second row, columns 3–13). Next we list all the
possible combinations of true and false that the atomic variables can take, so that
the first two columns gain four rows. Each atomic variable can have only two values
so that there will be 2nrows when there are n atomic variables.
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3.2. Symbolic logic

This is the initial setup. We now fill in the columns labeled a1, a2, b1 and b2 that
represent the values of the atomic variables. Column b1 takes the values of B from
column b. Similarly column b2 takes the identical values of B copied from column b.
Columns a1 and a2 take the values of A from the column labeled a. The rules for logical
connectives say that negation is done first, then conjunction, then disjunction, and
finally implication, symbolically “¬”, then “∧”, then “∨”’, and finally “→”. Of course,
expressions in parentheses must be done first (just like in arithmetic). Thus the
first calculation is done in the column labeled 1 where we calculate ¬B based on the
values of B provided by column b1. The second calculation produces column 2 which
evaluates A∧B using the values in columns a2 and b2. The third calculation produces
column 3 which evaluates ¬B ∨ A using the values in columns 1 and a1. Finally the
fourth calculation produces column 4 which evaluates ¬B∨A→ A∧B using the values
in columns 3 and 2. When doing this on paper, it is easy to cross out each column as
you use it. Thus after the first step you can cross out column b1.

The final result (column 4) is that ¬B ∨A→ A∧B is sometimes true, as sown in rows
3, 5, and 7, and sometimes false, as in row 4.

a b 1 b1 3 a1 4 a2 2 b2

A B ( ¬ B ∨ A ) → ( A ∧ B )
0 0 1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 1 1 1 0 0
1 1 0 1 1 1 1 1 1 1

If the formula is true for all values of A, B, C then the formula is called a tautology.
For example

¬A ∧ ¬B = ¬(A ∨B)

is a famous tautology called the De Morgan law. The other De Morgan law is

¬A ∨ ¬B = ¬(A ∧B) .

Two other important tautologies are the law of the excluded middle

A ∨ ¬A

and the law of contradiction
¬ (A ∧ ¬A) , (3.3)

If a statement is always true, a tautology, then it is a new truth, and can be used
as such in derivations. Note that above we have proved that ¬B ∨ A → A ∧ B is not a
tautology, hence it is not a truth.

Logic is one of those subjects that just invites argument in every sense of the word.
Aristotle said “A truth can only be derived from previously known truths.” The prob-
lem is, where do we start? How do we get first truths? In mathematics these known
truths are called axioms. They are reasonable statements that can be accepted with-
out justification. Except, every axiom of every formal system has been questioned
in numerous texts. And some axioms, such as the axiom of choice, that one can
randomly choose an example element from a set, which is absolutely indispensable
to most of mathematics, leads to conclusions that are not easily accepted (the well
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A B ¬A A ∧B A ∨B A→ B A = B A⊕B

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 0 0 1

1 1 0 1 1 1 1 0

Table 3.2.: The calculation rules for logical connectives

ordering theorem). “Where logic deals with ideals and abstractions it can have no
meaning” This is a direct quote from one of the most famous logicians who ever
lived, Bertram Russel. Thus classical logic is abstract and its results are meaningless
– literally meaningless.

Numbers for example have no physical representation. There can be two apples
but there is never a physical two. An apple is a thing you can see and feel and eat, a
two cannot be seen, felt, tasted, etc. it can only be imagined. The variable v can be
two but can v be an apple? No, a map is not a country, a picture is not a mountain,
a poem is not a tree. There are even worse problems with logic, Godël proved that
you could not prove all the truths that a formal logic could express, unless the logic
contained paradox, a statement the was both true and false like “Everything I say is a
lie”.

3.3. Predicate logic

Equation 3.1 is actually an example of predicate logic.

Predicate logic deals with predicates A(x) that make a statement (a predicate)
about x having the property A. The object x is limited to the Universe of Discourse,
usually some set. In Equation 3.1 we are assuming the universe is the Natural Num-
bers and that we have two predicates, one says x is divisible by three, T (x), and the
other says that x is divisible by six, S(x). The symbolic representation of Equation 3.1
is S(x)→ T (x).

“Socrates is a man” means that the statement that object x ≡ socrates possesses the
property A ≡ manness is true. Predicate logic, also called second order logic, sees all
the symbols of first order logic, with a few additions.
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3.4. Derivations

Symbol English

¬ not

∧ and

∨ or

→ implies

∀ for all

∃ there exists

In predicate logic there are two extra symbols of great importance called quanti-
fiers. The symbol ∃ stands for “there exists” and the symbol ∀ is read as “for all”.
∀x (x ≥ 0) is read that “for all x, x is greater than or equal to zero.” If the universe of

discussion is the integers Z then this statement is false. If the universe of discussion
is the natural numbersN then this statement is true.
∃x (x ≥ 0) is read there exists an x, such that x is greater than or equal to zero.

This statement is true if the universe of discussion is the natural numbers N or the
integers Z.

In predicate logic all predicates A(x), B(x) are either true or false for a particular x
in the universe of discourse.

Definition 4 (universal quantifier). ∀xA(x) is true if A(x) is true for every x in the
universe of discourse.

Definition 5 (existential quantifier). ∃xA(x) is true if A(x) is true for any x in the
universe of discourse.

Thereafter everything proceeds as in first order logic using the standard logical
connectives. Much more can be said about logic but this is sufficient for our purposes.
Fuzzy logic awaits us in Chapter 15.

3.4. Derivations

The first, and most important, deduction scheme is the modus ponens which is writ-
ten in tableau form as;

A
A→ B
B

(3.4)

and whose meaning is exemplified in Table 3.3a.
This deduction is expressed in symbolic logic by the formula

(A ∧ (A→ B))→ B . (3.5)

Second in our list of deduction schemes is the modus tolenswhich is written in
tableau form as;

¬B
A→ B
¬A

(3.6)
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A Premise 1
if A then B Premise 2
B Conclusion

(a) modus ponens

not B Premise 1
if A then B Premise 2
not A Conclusion

(b) modus tolens

if A then B Premise 1
if B then C Premise 2
if A then C Conclusion

(c) hypothetical syllogism

Table 3.3.: Rules of derivation.

and whose meaning is exemplified in Table 3.3b.
This deduction is expressed in symbolic logic by the formula

¬B ∧ (A→ B)→ ¬A . (3.7)

The third deduction scheme of interest is the hypothetical syllogism, which is writ-
ten in tableau form as;

A→ B
B → C
A→ C

(3.8)

and whose meaning is exemplified in Table 3.3c.
This deduction is expressed in symbolic logic by the formula

((A→ B) ∧ (B → C))→ (A→ C) . (3.9)

The most important part of classical logic was the ability to derive new truths from
old truths.. A method of derivation is called a deduction rule. The most famous is the
modus ponens which is sometimes written

A ∧ (A→ B)→ B

but this form ignores the fact that we have two distinct facts. One fact is that A is
true. The other fact is that the truth of A implies the truth of B. From these two facts
we arrive at the conclusion that B is true. Thus the rule is more properly is written

A

A→ B

B

and says that if A is true and A implies B is true then we can logically conclude that
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B is true. We can illustrate this derivation thusly:
It is raining.
If it rains the grass gets wet.
The grass is wet.

The Latin names for these rules of deduction represent the fact that logic was one
of the few areas of knowledge kept alive during the dark ages of western Europe.
The logical method called the modus tollens is properly written as:

A→ B

B → C

A→ C

This line of reasoning is usually illustrated with the example:
Socrates is a man.
All men are mortal.
Socrates is a mortal.

3.5. Logic and set theory

We are going to examine this correspondence in detail, since it is very important to
the development of fuzzy set theory and fuzzy logic.

The basic correspondence we wish to exploit is that between the characteristic
function of a subset of a universe and a predicate.

Let the universe of discourse be U = {a, b, c, d, e, f}. Let A = {a, e} be the set of vowels
in the universe and B = {d, e, f} the set of the last three letters. It is easy to see that
A ∩ B = {e} . Remember that the characteristic function of a set is zero for x if x is
not in the set and is one if x is in the set. Let us examine the relation between A,
B, and A ∩ B in terms of their characteristic functions. Consider the element a of U .
Since it is in A we have that χA(a) = 1, since it is not in b we have that χB(a) = 0, and
finally, since a is not in the intersection of A and B, we have that χA∩B(a) = 0. This
pattern will always hold, that is, if x ∈ U then if characteristic function for the first
set is one and the second set is zero, , χA(x) = 1 and χB(x) = 0, then we will always
have that the element is not in the intersection and that the characteristic function
of the intersection is zero for that x, that is χA∩B(x) = 0. Table 3.4a shows the four
possible patterns for χA(x) and χB(x) as x cycles through U. When x = a we have Case
3 as illustrated previously. Elements b and c are covered by Case 1. Elements d and f
are covered by Case 2. Finally elements e is covered by Case 4.

Let the universe of discourse be U = {a, b, c, d, e, f}. Let A be the predicate that x ∈ U
is a vowel in the universe and B the predicate that x ∈ U is one of the last three
letters in the universe. It is easy to see that A ∩ B = {e} . Now if a predicate A is
true ≡ 1 about x and predicate B is false ≡ 0 about x then the conjunction operator
produces a false ≡ 0 for their and. In other words true and false equals false. Table 3.4b
shows the four possible patterns for A(x) and B(x) as x cycles through U. When x = a
we have Case 3 as illustrated previously. Elements b and c are covered by Case 1.
Elements d and f are covered by Case 2. Finally elements e is covered by Case 4.

It seems that the behavior of set intersection and logical and are very similar. Math-
ematics calls this an isomorphism, which is Greek for same shape. It turns out that
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Case χA(x) χB(x) χA∩B(x)

1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Case A(x) B(x) A ∧B(x)

1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Table 3.4.: Tables for the intersection operator and logical and.

Logical English Set
connective translation operation

∼ A or ¬A not A A or A
A ∧B A and B A ∩B
A ∨B A or B A ∪B
A→ B if A then B A ⊆ B
A = B A equals B A = B
A⊕B A exclusive or B A4B

Table 3.5.: Logical connectives, with English translations and set operation equiva-
lences.

set complement and logical negation are also isomorphic. So is set union and logical
or.

In a slightly different way subsethood mimics logical implication. The difference is
that subsethood is a relation while implication is an operator. Still if A(x)→ B(x) is a
tautology, that is it is always true, then the set of elements that makes A true will be
a subset of the set of elements that make B true.

Table (3.5) summarizes the isomorphism between set theory and logic. It gives the
English meaning and the corresponding set theory operators and logical connectives.

The purpose of this chapter is to extend classical logic to fuzzy logic as classical
or crisp sets were extended to fuzzy sets. However, as will be seen we may have to
abandon the truth table () in its entirety. It is also important to note that this is not the
first attempt to extend classical logic. Many others have tried, including Lukasiewicz
who developed a three valued logic for true, false, and unknown as well as multi-valued
logics. The logic of two-values is often called Boolean logic.

3.5.1. Other logics

The limitations of formal logic led to many attempts to expand their role and power.
Some of the attempts include:

DEONTIC LOGIC —Logics of permission and obligation (derived from modal logics of
possibility and necessity); hence the logic of norms and normative systems.

EPISTEMIC LOGIC —The logic of non-truth-functional operators such as “believes” and
“knows”. For example, let p̈ mean that “I know proposition p”. If p̈ and p→ q are
given, then what must we add in order to infer q̈?
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INTUITIONISTIC LOGIC —Propositional logics (and their predicate logic extensions) in
which neither “p∨˜p” nor “¬¬p→ p” are provable. They accept disjunctions A∨B
as theorems only if one of the disjuncts is separately provable: i.e. if either ` A
or ` B. They have the same rules of inference as classical logic. Propositional
connectives are undefined primitives.

MULTIVALUED LOGICS —Logics in which there are more than the two standard truth-
values “truth” and “falsehood”. Motivated by semantic paradoxes like the liar
(“this statement is false”) and by future contingents (“tomorrow there will be a
sea-battle”), that don’t easily take either standard truth-value, and by attempts
to deal with uncertainty, ignorance, and ”fuzziness”. An early example was
Lukasiewicz’s three valued logic with atomic variables that are true, false, or
undetermined (since the original is in Polish, the third value has many other trans-
lations, such as possible, and unknown). Thus the image set of the characteristic
function might be the set T = {0, u, 1}, and u is usually mapped to the numerical
value 1

2 .

MODAL LOGIC –necessary and possibly true. There are two additional unary operators
�p and ♦p that represent a necessarily and possibly true proposition. This is
based upon an all possible worlds framework.

QUANTUM LOGIC —To reflect quantum indeterminacy and uncertainty, quantum logic
adds a third truth-value (“indeterminate”); hence the metatheory denies the
principle of excluded middle (PEM). Nevertheless, for every p, “p∨¬p” is logically
valid in systems of quantum logic. That is, PEM is true in the theory, false
in the metatheory. Because both disjuncts of a true disjunction can be false,
disjunction and conjunction behave asymmetrically; hence the distribution laws
generally fail. Motivated to capture the queerness of quantum-mechanics; in
quantum logic this queerness shows up on the propositional level, in redefined
connectives.

TEMPORAL (TENSE) LOGIC —Time dependant truth. Logics in which the times at
which propositions bear certain truth-values can be indicated, in which the
“tense” of the assertion can be indicated, and in which truth-values can be af-
fected by the passage of time.

3.6. Multi-valued logics

Multi-valued logics are the precursor to fuzzy logic. Łukasiewicz was the first to
introduce a three valued logic containing true, false, and unknown (or undecided or unde-
termined). Typically, these truth values are mapped to the numerical values true ≡ 1,
false ≡ 0, and unknown ≡ 1

2 (or undetermined). The problem in designing multi-valued
logics is defining the logical connectives, especially the implication operator “→”.
For a three valued logic there are many large truth tables to memorize. What if we
have a five valued logic, to model a Likert scale with strong − disagree ≡ 0, disagree ≡ 1

4 ,
neutral ≡ 1

2 , agree ≡ 3
4 , and strong − agree ≡ 1. Truth tables for this system have 25 lines

to them.
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Tables don’t even work for a function from atomic variables that have continuous
truth values. Tables don’t work for a domain where a predicate A(x) can have any
truth value between false ≡ 0 and true ≡ 1, which is exactly what fuzzy logic needs and
uses.

However, sometimes the truth tables of these various logics can be avoided by the
use of formulas.

Example 16 (Lukasiewicz 3–valued logical connectives). Let t represent true, u rep-
resent undetermined, and f represent false. The truth table for the negation operator
for Łukasiewicz 3-valued logic is

¬
t f
u u
f t

.

The truth table for the implication operator, A→ B, in Łukasiewicz 3-valued logic is

→ t u f

t t u f
u t t u
f t t t

(3.10)

where the A value comes from the row heading and the B value comes from the
column heading.

Example 17. If we associate the numerical values of t = 1, u = 1
2 , and f = 0 in

Łukasiewicz 3-valued logic then

p→ q = 4p2q2 − 4p2q − 4pq2 + 5pq − p+ 1

whenever p, q ∈
{

0, 12 , 1
}
.

Example 18. If we associate the numerical values of t = 1, u = 1
2 , and f = 0 in

Łukasiewicz 3-valued logic then

p→ q = min[1, 1− p+ q]

whenever p, q ∈
{

0, 12 , 1
}
.

In the last two examples, the polynomial in two variables 4p2q2−4p2q−4pq2+5pq−p+1
provides an analytic expression for Łukasiewicz implication that is a continuous, and
differentiable; on the other hand, min[1, 1 − p + q] is much simpler, however the min
function is continuous but not differentiable.

Example 19. If we associate the numerical values of t = 1, u = 1
2 , and f = 0 in

Łukasiewicz 3-valued logic then:

p ∧ q = min[p, q]

p ∨ q = max[0, p+ q − 1]

¬p = 1− p
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whenever p, q ∈
{

0, 12 , 1
}
.

Example 20 (Godel 3–valued logical connectives). Let t represent true, u represent
undetermined, and f represent false. The truth table for the negation operator for Godel
3-valued logic is

¬
t f
u f
f t

.

The truth table for the implication operator, A→ B, in Godel three-valued logic is

→ t u f

t t u f
u t t f
f t t t

(3.11)

where the A value comes from the row heading and the B value comes from the
column heading. In addition

p ∧ q = min[p, q]

p ∨ q = max[p, q]

3.7. Notes

The demonstration for the truth table of implication comes from Łukasiewicz (1963)
who also introduced three valued Łukasiewicz (1920). Multi-valued logics were in-
troduced by Post (1921).

3.8. Homework

1. Seek out a fellow student that is taking logic in the philosophy departement
at your college. Ask them what notation their book uses for the implication
operator. Ask them what the course is supposed to teach them?

2. Seek out a fellow student that is taking logic in the math or computer science
departement at your college. Ask them what notation their book uses for the
implication operator. Ask them what the course is supposed to teach them?

3. Go to www.amazon.com and do a book search for logic. Why this modern obses-
sion with logic. Did you find any logics not described in this chapter?

4. Is A→ (B → A) a tautology?

5. Is A→ (A→ B) a tautology?
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6. Is (¬A ∨B) = (A→ B) a tautology?

7. What is wrong with the ham sandwich example?

8. Since we can prove that the world is round why do some people still beleive it is
flat.

9. How many angels can dance on the head of a pin. Prove your answer.
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4. Probability Theory

4.1. Introduction

I returned, and saw under the sun, that the race is not to the swift, nor
the battle to the strong, neither yet bread to the wise, nor yet riches to
men of understanding, nor yet favour to men of skill; but time and chance
happeneth to them all. Ecclesiastes 9:11

That chance plays a large part in our lives has been known for a long time. In the
18th century the origins of probability theory began when French mathematicians
such as Pascal and Fermat tried to provide precise answer to questions about games
of chance.

Probability theory deals with random processes. A random process is one whose
exact outcome in a single experiment is indeterminate, but whose long term behav-
ior in repeated experiments is describable. The classic example is the outcome of
flipping a coin. It is impossible to know whether a fair coin thrown into the air will
fall to the ground exposing the side called heads or the side called tails. However if
we flip the same coin one thousand times we expect that both the number of heads
and the number of tails will be very close to five hundred each. This is a description
of long term behavior; in repeated coin flips we expect the frequency of the heads
and the frequency of the tails to be almost equal. The flipping of a coin is therefore
considered a random event.

Bayesian Probability deals with subjective belief. Consider going to Las vegas and
betting on Detroit Lions to win Superbowl XLIII. before the season starts. The Las
Vegas oddsmakers consider the chance of the Lions winning the Superbowl as re-
mote, and sets the odds at 100/1 (one–hundred to one). Odds of 100/1 means a bet
of $1 would return $100 if Detroit does in fact win the Superbowl. The Detroit Lions
winning Superbowl XLIII is not a repeatable experiment. These odds are set based on
the knowledge and experience of the oddsmaker. As soon as the NFL season starts,
games are won and lost, and these facts change the odds. If Detroit starts winning
the odds narrow and a better gets a smaller return for a $1 bet.

Probability

Here we present Probability as it is used for dealing with random processes.
Probaility theory comes with its own special jargon. The universal set s is called

a sample space, its elements are called sample outcomes and its subsets are called
events. If A and B are subset of the sample space (events) then the event “A or B” is
modeled as A ∪ B, the event “A and B” happened is modeled as A ∩ B, and the event
“not A” happened is modeled as the complement of A . While the first two models
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for “or” and “and” use standard set notation for unions and intersections, the third,
“not”, borrows from the notation of logic, and most probability books use either Ā
or A′ for negation. Finally, probability uses a notation that is essentially undefined!
The probability of event A happening given that B is already known to have occured
is denoted P (A | B) , which is read as the probability of A given B. The probability
P (A | B) is called a conditional probability.

Given a finite sample space S with |S| = n and a function p that maps this set into
the unit interval,

p : X → I

then p is called a finite probability distribution iff∑
s∈S

p(s) = 1

A finite probability measure is a mapping from the set of all events E (subsets of S)
into the unit interval,

P : E → I

such that the probability measure of the empty set is zero:

P (∅) = 0 (4.1)

the probability measure of the sample space is one:

P (S) = 1 (4.2)

and the measure is additive, that is, the probability of A or B (modeled as A ∪ B)
is equal to the sum of the probailities of A and B minus the probability of A and B
(modeled as A ∩B):

P (A ∪B) = P (A) + P (B)− P (A ∩B) (4.3)

This last rule is easy to see from a Venn Diagram of A and B. If we think of the area
of the circles A and B as their probability, then the are of A ∪ B is the area of A plus
the area of B minus the overlap A ∩ B , which had been counted twice by adding the
probabilities of A and B. See figure (4.1).

There is a one-to-one correspondence between finite probability distributions and
finite probability measures. Given a finite probability measure, P , we can derive the
associated finite probability distribution by way of the formula

p(s) = P ({s}).

In the other direction, the probability assigned to a subset of the universal set is
equal to the sum of the probabilities that the distribution assigns to the elements of
that subset,

P (A) =
∑
s∈A

p(s).

For simplicity of notation let us define

pi = p(si) = P ({si})
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Figure 4.1.: Venn digram of A ∪B.

for all i ∈ Nn.

Within probability theory full certainty is expressed by p(s) = 1 for a particular s ∈ S.
The expression of total ignorance in probability theory, on the other hand, is given by

p(s) =
1

|S|

for all s ∈ S.

The set of outcomes of throwing a fair die can be represented by the universal set
X = {x1 = �, x2 = �, x3 = �, x4 = �, x5 = 	, x6 = 
} where we see xi has a value
of i that corresponds to the numbers of spots on the upper side of the die when it is
thrown.

If the die is absolutely fair then all of the six outcomes are equally likely and pi = 1/6
for i ∈ N6 since the six probabilities must sum to one. We can now talk about the
probability of any outcome of rolling the die. The probability that a thrown die is
even is P (E) where E = {x2, x4, x6} and

P (E) = P ({x2, x4, x6})
= p2 + p4 + p6

=
1

6
+

1

6
+

1

6

=
1

2

so that the probability of an even throw is one-half. The probability of throwing a
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number greater than four is P (G) where G = {x5, x6} and

P (G) = P ({x5, x6})
= p5 + p6

= 1
6 + 1

6

= 1
3

so that probability of throwing a number greater than four is one-third.
Another important formula of probability is due to the fact that A and not A include

everything, and have nothing in common, thus A ∪ Ā = S and A ∩ Ā = ∅. Since the
probability of everything (the sample space) is one (See Eq. 4.2) and the probaility of
the empty set is zero (See Eq. 4.1) we can use Eq. 4.3 to conclude that the probability
of A union not A is one.

P (A ∪ Ā) = P (A) + P (Ā)− P (A ∩ Ā)

P (S) = P (A) + P (Ā)− P (∅)
1 = P (A) + P (Ā)− 0

1 = P (A) + P (Ā)

If we rearrange P (A) + P (Ā) = 1 we get the following rule:

P (Ā) = 1− P (A) .

A similar derivation using the facts that (A∩B)∪ (A∩ B̄) = A and (A∩B)∩ (A∩ B̄) = ∅
gives a useful formula:

P (A) = P (A ∩B) + P (A ∩ B̄) (4.4)

4.1.1. Conditional Probability

The notation for conditional probabilites is P (A | B) and the formula for their compu-
tation is

P (A | B) =
P (A ∩B)

P (B)
. (4.5)

Let us consider rolling a dice twice. There are 36 possible outcomes since there
are six differnt outcomes for the first die and six differnt outcomes for the second die.
If the die is fair each individual throw has six outcomes of equal probability, and that
probability is 1

6 . The two throws are independant so that each of the 36 compound
events, such as tossing a �on the first throw and a �on the second has probability
1
36 . This follows from the same logic as the head and tails Example above. Let A be
the event that the sum of the spots on the two rolls is seven. Let B be the event that
one of the two rolls is a five. Specifically

A = {�
,�	,��,��,	�,
�}

and
B = {	�,�	,	�,�	,	�,�	,	�,�	,		,	
,
	}
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. To apply formula (4.5) we will aslo need to know the probability of A∩B = {�	,	�}.
Now the probability of A ∩ B is 1

36 + 1
36 = 2

36 and the probability of B is 11
36 (which is

1
36 added 11 times). We can now calculate the probability one of the dice was a five
given that the sum of the two rolls was seven, or P (A | B).

P (A | B) =
P (A ∩B)

P (B)
=

2
36
11
36

=
2

11
.

Example 21. Suppose the sample space is the set of adults in a small town who have
completed the requirements for a college degree. We shall classify these adults by
employment and sex. The resultant data is summarized in the folwing Table.

Employed Unemployed Total

Female 140 260 400
Male 460 40 500
Total 600 300 900

We will be interested in two events:

M: a man is chosen

E: an employed adult is chosen

Let us calculate the probability that someone is male given that they are employed.
There are 900 adults under consideration and 460 are Male and Employed so P (M ∩
E) = 460

900 . There are 600 employed adults so P (E) = 600
900 . Finally we calculate that

P (M | E) =
P (M ∩ E)

P (E)
=

460
900
600
900

=
23

30
.

4.2. Independence

Example 22. If we rearrange formula (4.5) we get the multiplication rule for proba-
bilites:

P (A ∩B) = P (A)P (B | A) (4.6)

Two events A and B are independent if P (A) does not depend on the occurance of B
and Pr(B) does not depend on the occurance of A. In other words, if P (A) = P (A | B)
and P (B) = P (B | A) then A and B are independant, otherwise they are dependant.
If events A and B are independent, then the probability of A and B both occuring,
P (A ∩B), is just the product of the individual probabilities of A and B:

P (A ∩B) = P (A)P (B) .

4.3. Joint Distributions

When a probability distribution function p is defined on a Cartesian product X × Y , it
is called a joint distribution. In this case we have that p : X×Y → [0, 1]. The associated
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marginal distributions are determined by the formulas

pX(x) =
∑
y∈Y

p(x, y) (4.7)

for each x ∈ X and
pY (y) =

∑
x∈X

p(x, y) (4.8)

for each y ∈ Y . The noninteraction of the marginal bodies of evidence is defined by
the condition

p(x, y) = pX(x) · pY (y) (4.9)

for all x ∈ X and all y ∈ Y .

Example 23. Suppose we flip a fair coin twice. Let H denote “heads” and T denote
“tails.” The sample space consists of the four possible outcomes: S = {HH,TH,HT, TT}.
We assume the coin is fair so that each of the four outcomes has an equal probability.
We will now compute these probabilities. For a fair coin the probability of “heads”
on any flip equals the probability of “tails” and since these values must add up to one
we have that:

p(H) = p(T ) = 1/2.

The first flip does not depend on the occurance of the second flip and the second flip
does not depend on the first flip. This is what we mean by the independence of the
events “first flip” and “second flip”. We denote “first flip” as smple one or s1 and
“second flip” as sample 2 or s2. The probability of any s ∈ S is then

p(s1s2) = p(s1)p(s2)

for s1, s2 ∈ H,T . Specifiicall, when s1 = H and s2 = H, then

p(HH) = p(H)p(H) =
1

2
× 1

2
=

1

4
.

Clearly then, p(HH) = p(TH) = p(HT ) = p(TT ) = 1
4 . The four events HH, TH, HT ,

and TT are exhaustive (ther are no other possible outcomes) and mutually exclusive,
no two can occur at the same time. As a check on the rule of probability given by
Equation ((4.2)) we note that

P (S) = p(HH) + p(TH) + p(HT ) + p(TT ) = 1.

Example 24. We can define other events that can occur as the result of flipping a
coin twice. For example, the event that the coin is gives the same reult on both flips
is A = {HH,TT} . The event that the second flip is tails is B = {HT, TT} . The event
that both flips are tails is C = {TT} .We can then calculate the probabilities of these
events:

P (A) = P ({HH,TT}) = p (HH) + p (TT ) =
1

4
+

1

4
=

1

2

P (B) = P ({HT, TT}) = p (HT ) + p (TT ) =
1

4
+

1

4
=

1

2

44



4.4. Bayes Theorem

P (C) = P ({TT}) = p (TT ) =
1

4
.

Example 25. 20% of College students are seniors. 61% of College students are
female. If we assume theer is no interaciton then the probability that a randomly
chosen student is a senior female is %12.2.

4.4. Bayes Theorem

Bayes Theroem allows us to calculate the difference between prior (before the fact)
and posterior (after the fact) knowledge. The formula is easy to derive by noting that
P (A ∩B) = P (A)P (B | A) and that P (A ∩B) = P (B)P (A | B) . If we apply a little algebra
to the equivalence P (A)P (B | A) = P (B)P (A | B) we get Bayes Theroem:

P (A | B) =
P (B | A)P (A)

P (B)
(4.10)

Example 26. Suppose we continue using the data of Example 21 and ask “What is
the probability that someone is employed given that they are male?” We have already
calculated the probability that someone is male given that they are employed, or
P (M | E). There are 500 adult males so P (M) = 500

900 . There are 600 employed adults
so P (E) = 600

900 . Bayes Theroem now gives:

P (E |M) =
P (M | E)P (E)

P (M)

=
23
30 ×

600
900

500
900

=
23

25

which makes sense since we already knew that 460 out of 500 males were emplyed.

Where Bayes Thereom becomes really important is when probability is viewed as
rational coherent degrees of belief. The Bayes Therorem allows us to update proba-
bilities as new information becomes available. Since probabilities are beleifs, we can
start with a subjective estimate. Thus we can start with a beleif that the probability
of the Detroit Lions winning Superbowl XLIII is 1

100 . As they start to win games, we
can look at the records of previous seasons to calculate how often a team with an
identical record went on to win the superbowl. This allows us to update the odds.

Example 27 (Drug testing). Suppose we run a company and wish to test new em-
ployees for drug use. We have a test that that is fairly accurate in that it is positive
for drug users 95% of the time and negative for non-drug usere 95% of the time.
Suppose that 1% of the employees are drug users. Let us calculate the probability
that the person is not a drug user given that the test is positive. Let T be the event
that the test is positive. Let D be the event that the employee is a drug user. Here is
what we know:
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P (D) 1% of the employees use drugs

P (D̄) 99% of the employees do not use drugs

P (T : D̄) 5% of the non–drug users test positive

P (T̄ : D̄) 95% of the non–drug users test negative

P (T : D) 95% of the drug users test positive

P (T̄ : D) 5% of the drug users test negative

We can use Eq. 4.4to calcualte the probability positive test result P (T ) = P (T ∩
D) + P (T ∩ D̄). By Eq. 4.6P (T ∩D) = P (T | D)P (D) or P (T ∩D) = 0.95 × 0.01. Similarly
P (T ∩ D̄) = P (T | D̄)P (D̄) or P (T ∩ D̄) = 0.05× 0.99.

By Bayes Theroem

P (D̄ | T ) =
P (T | D̄)P (D̄)

P (T )

=
0.05× 0.99

0.95× 0.01 + 0.05× 0.99

= 0.838983051

or about 84%.

Sometimes Bayes Theorem is presented in terms of an hypothesis h and evidence
e,

Pe(h) =
Pe(h)P (e)

P (h)
. (4.11)

This formula tells how to recalculate the probability of our hypothesis as new evi-
dence is accumulated.

4.5. Continuous Sample Spaces

For a continuous universal set S the definitions of probability distribution and proba-
bility measures are more complex. It is usually necessary to limit the the set of events
to those that are well behaved mathematically. The probability measure is usually de-
fined on a Borel set and the formula for the union of two sets needs to be expanded
to one suitable for countable unions of sets. This book will have little need of these
precise definitions. What is important about continuous probability distributions is
that instead of summing the distributional values as is done for discrete distributions
we must integrate. A probability distribution is still a function from the sample space
into the unit interval, but instead of summing to one we have . The formula for the
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probability of an event A is now given by

P (A) =

ˆ
x∈A

p(x) dx

where A is a subset of the continuum S.

4.6. Statistics

A random variable is a real valued function whose domain is a sample space.

A statistic is a number that describes some property of a random variable. As an
example let X be a random variable that maps the set of outcomes of rolling a die
onto the numbers one through six. Thus the sample space is S = {s1, s2, s3, s4, s5, s6}
and X : S → {1, 2, 3, 4, 5, 6} is specified by X(si) = i for i ∈ N6. Let xi = X(si). If we
repeatedly roll the die, and keep track of the outcome, we can calculate a statistic,
such as the average value of the outcome, that gives us information about the whole
experiment, and hence about the die itself. If we roll the die thirty times then we
might get five ones, six twos, three threes, six fours, six fives and four sixes. We can
calculate the average by adding up all the outcomes and dividing by thirty, giving
3.4667 for the average.

The average is a measure of central tendency. In statistics the three most common
measures of central tendency are the mean, the median and the mode. The mean
is just the average value. The median is the middle number, the number that half
the data is above and half the data is below. The mode is the outcome that has the
greatest frequency.

Besides the measures of central tendency, measures of dispersion are the most
widely used statistics. The variance is the average value of the square of the distance
of the random variable from the mean, for the die example given above the variance
is 2.8489. The standard deviation is the square root of the variance.

Of course there is always some difference between the real and the ideal. One
would be shocked if the all thirty rolls of the die produced a one! In fact there is
always some difference between an experimental mean, usually symbolized by m,
and an ideal mean, usually represented by µ.

The expected value of a finite random variable, E(X), is the sum of the probability
of that outcome multiplied by the corresponding value of the random variable,

E(X) =
∑
s∈S

p(s) ·X(s)

=
n∑
i=1

pi · xi
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where, n, is the size of the universe and for any function f : X → R.

E(f(X)) =
∑
s∈S

p(s) · f(X(s))

=
n∑
i=1

pi · f(xi)

In the case of a fair die the ideal mean is the expected value of the die

µ = E(X)

= (1 · 1

6
) + (2 · 1

6
) + (3 · 1

6
) + (4 · 1

6
) + (5 · 1

6
) + (6 · 1

6
)

= 3.5

The ideal variance, σ2, is the expected value of the square of the distance of xi from
the expected mean.

σ2 = E((X − µ)2)

= ((1− 3.5)2 · 1

6
) + ((2− 3.5)2 · 1

6
) + ((3− 3.5)2 · 1

6
)+

((4− 3.5)2 · 1

6
) + ((5− 3.5)2 · 1

6
) + ((6− 3.5)2 · 1

6
)

= 2.917

The standard deviation is the square root of the variance.
The expected value of the surprise, − log2 pi = log2

1
pi

is called the Shannon en-
tropyShannon (1948) and is the basis of information theory in statistical applications:

S(p) = −
n∑
i=1

pi log2 pi .

For the continuous case the formulas for expected values become ,

E(X) =

ˆ
S

X(s) · p(s) ds

where, n, is the size of the universe and for any function f : X → R.

E(f(X)) =

ˆ
S

f(X(s)) · p(s) ds

4.7. Homework

Let us define the universal sets

X = {1, 2, 3, 4, 5, 6}, (4.12)
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Y = {a, b, c}, (4.13)

Le

A = {1, 2},
B = {1, 3},
C = {2, 4, 6},
D = {a, b}, and

S = {〈1, a〉 , 〈2, b〉 , 〈3, b〉 , 〈2, c〉} .

Given the above information, answer the following questions.

1. If we have the uniform probability distribution on X so that p(x) = 1
6 for all

elements x of X, what is P (A), P (B), P (C), P (∅), and P (X)?

2. What is the expected value of x under the assumptions of the previous question?

3. If we have a probability distribution p on X so that p(1) = 0.1, p(2) = 0.2, p(3) = 0.3,
p(4) = 0.1, p(5) = 0.2, and p(6) = 0.1 then what is P (A), P (B), P (C), P (∅), and P (X)?

4. What is the expected value of x under the assumptions of the previous question?

5. What is the probability of getting lung cancer if a person is a smoker.
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5. Fuzzy sets

5.1. Introduction

Vaugeness is a pervasive part of the human experience. Human language is an im-
precise tool. Human perception is fraught with inaccuracy. Memories are fleeting
and malleable. The real world is not an abstraction; it is not clearly perceived, well
defined, and precisely calculated.

The advent of computer technology has made philosophical dilemmas moot. Pro-
grammers are tasked with the creation of software that works, for and with humans.
Trying to bridge the cybernetic gap has led to the creation and use of a host of tech-
nologies — artificial intelligence, data mining, expert systems, for example — that
need to represent and manipulate the uncertainties of real life.

One of the most powerful tools of the cybernetic age is fuzzy set theory. A fuzzy set
has graded membership. Thus it is designed to handle vagueness.

For many years, Pluto was a planet and then in 2006, it was not. Pluto had not
changed. What had changed was its classification. The discovery of many distant ob-
jects in the solar system, some larger than Pluto, had caused astronomers to question
the classification of Pluto. In fact, on August 24, 2006, the International Astronomi-
cal Union defined the term “planet” for the first time! Pluto did not fit the definition.
Pluto is now classified as a “minor planet”.

Fuzzy set theory takes a different approach. The classifications planet and minor
planet would not have distinct boundaries. Instead, some objects might have char-
acteristics that allow for partial inclusion in both categories. It would place Pluto in
the set of planets but not to the same degree as the eight inner planets.

It is also very important to notice that up until 2006 it would seem that the scientific
term planet was vague! Was it that scientists did not know what they were talking
about? That is not the case. The lack of a precise definition of planet in no way
impacted its use or usefulness. Historically, the planets were Mercury, Venus, Earth,
Mars, Jupiter and Saturn, (and, according to Ptolemy and others, the Moon). Galileo’s
discovery of Jupiter’s moons eliminated the Moon from the list and the telescope
eventually added Uranus and Neptune. Finally, Pluto was discovered and added even
though it turned out to be smaller than the Moon. The discovery of objects orbiting
other suns brought the lack of definition of planet into sharp focus. Something had
to be done.

For computers to process vague and ill defined information, something had to be
done.
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5.2. Set Theory

As explained in Chapter 2, sets are the basis of all mathematics. A set is a collection
of objects. The set of candidate objects is the universal set, most often labeled X or
U . Typical universal sets are the real numbers or the natural numbers.

The important aspect in defining a set is that the definition must enable one to
determine which objects are in the set and which objects are not in the set. Sets are
specified using one of three methods: explicit listing of elements, specification of a
necessary property, and the use of characteristic functions.

1. For finite sets one can use an complete listing such as A = {2, 4, 6}. For countably
infinite sets the ellipsis “. . . ” denotes “and so on” as in the set of all natural
numbers N = {1, 2, 3, 4, . . .}.

2. Specifying a set by listing a property that all its contents must have can be used
for any type of set. For example we can have A = {x | x is an even natural
number less than 7} which is the same A as in the previous item. Another
example is the infinite set P = {x | x is a prime number}.

3. For the purposes of this book the characteristic function method is the most
important way of determining a set’s contents. The characteristic function of a
set A, χA(x), is zero if x is not in the set A and one if x is in the set A.

χA(x) =

{
1 x = 2, 4, 6
0 otherwise

(5.1)

5.3. Fuzzy Sets

Consider the set F of delicious foods. Traditional set theory says that every candidate
food x must be either in the set or not in the set. Most people would place chocolate
in the set F but how about caviar. Caviar is salty and fishy and not to everyone’s
taste, yet those who do like it consider it a delicious food. There is a famous adage
that “the best sauce is hunger,” and to a hungry man a simple slice of bread and bowl
of soup will seem very delicious indeed. The set F suffers because delicious food is
not an easily defined notion, as opposed to the notion of a prime number which can
be defined precisely.

Computers can understand things that can be defined precisely, and have a lot of
trouble with concepts that humans grasp in childhood. Take the set B of all balls.
Certainly ping-pong balls and baseballs are in B, and most people would admit that
a football, while not precisely round, is a ball. But how about a whiffleball or the
shuttlecock used in badminton?

The characteristic functions of classical set theory maps elements of some univer-
sal set X into the binary set B = {0, 1}. This dichotomy is typical of classical western
thinking, whether it is as yes and no, true and false, or one and zero. The funda-
mental idea of fuzzy set theory is that real world phenomena cannot be divided easily
into such black and white divisions. For example, what is, exactly, the dividing line
between rich and poor. Where does the middle class fit into such a categorization?
Is every day either sunny or cloudy? Is all food either good or bad?
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In fuzzy set theory we extend the image set of the characteristic function from
the binary set B = {0, 1} which contains only two alternatives, to the unit interval
U = [0, 1] which has an infinite number of alternatives. We even give the characteristic
function a new name, the membership function, and a new symbol µ, instead of χ.
This introduces a richer and highly applicable field which measures the world in
shades of gray. It measures wealth in gradations that include “upper middle class,”
it represents weather with values that include “patchy clouds,” and even allows us to
classify some as being “just okay.”

The mathematics of fuzzy set theory is often more difficult than that of the tradi-
tional set theory because the continuous interval U = [0, 1] is inherently more complex
than the binary set B = {0, 1}.

5.4. Membership functions

The terminology fuzzy is due to Lotfi Zadeh who created the field of fuzzy sets in
Zadeh (1965). Zadeh knew that there were other kinds of uncertainty in the world
besides the randomness that is handled in probability theory. Things that are not
random can still be uncertain. If someone places a die on the floor on the opposite
side of the room then there is no randomness involved in ones inability to precisely
determine the number of spots on the top of the die. Zadeh’s motivation came pri-
marily from modeling human language. The statement “Sally is very tall” contains
ambiguities and imprecisions that have nothing to do with randomness.

Zadeh decided to term this kind of uncertainty “fuzzy” and we have inherited his
terminology.

Since its inception there has been great criticism of fuzzy set theory leading to fuzzy
thinking. One might as well criticize probability theory for leading to random actions.
Probability theory is a precise mathematical device for processing data whose source
is a random event. Fuzzy sets are a precise mathematical tool for processing data
that is derived from vague sources. Human beings transmit vague information such
as “Juan is just a teenager.”

In fact, if you ask a question like, “How old is Juan?” to most people, you will not
get a numeric answer. Only his friends and relatives usually know his exact calendar
age. An acquaintance will answer that he is a “teenager” or “young” or “adolescent.”
And the age of the person answering the question will greatly influence the answer
given. A person of seventy might say Juan is a “boy” whereas a contemporary would
not. A contemporary might even say “He is the same age I am,” which provides no
direct numerical information.

The vagueness of language, and its mathematical representation and processing,
is one of the major areas of study in fuzzy set theory.

Since there is nothing fuzzy about a fuzzy set we must be specific about its defini-
tion and interpretation. A fuzzy set is just a function. Its domain is some universal
set X. Its range is the unit interval U =[0, 1].

When Zadeh (Zadeh (1965)) originated fuzzy sets he introduced the membership
function of a fuzzy set A and used the notation

µA : X → [0, 1] .
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5. Fuzzy sets

Figure 5.1.: A fuzzy set D on a discrete universe X = {x1, x2, ..., xn}.

Specifying the membership function specifies the fuzzy set. This notation and defini-
tion is extremely similar to that of the characteristic function of traditional or crisp
set theory. Characteristic functions use the Greek letter chi, χ, instead of mu, µ, and
limit the function to zero and one while membership functions allow the complete
spectrum from zero to one.

Example 28. Let X = {a, b, c} and define the fuzzy set A as follows, set µA(a) = 1.0,
µA(b) = 0.7, and µA(c) = 0.4. Thus a is completely compatible with the label or classifica-
tion A while b is only very compatible. On the other hand c is somewhat incompatible
with the notion conceptualized by A.

Given this definition of µA, A is now a fuzzy set and we possess an explicit definition
of its membership function. Unfortunately the tag of the fuzzy set, A, is difficult to
read as a subscript, and the membership function of a fuzzy set with a subscript, such
as Ai with membership function µAi , compounds the subscript problem.

As observed in Chapter 2 it is often desirable to use the same tag for a set and for
its characteristic function. We will expand on that observation here in this section,
by using the tag A to represent both the fuzzy set and its membership function. Thus,
if A is a fuzzy set then we will also use A as the label of a function from a universe of
discourse X into the unit interval U = [0, 1]

A : X → [0, 1] . (5.2)

Example 29. The membership function of the fuzzy set in the previous example
(#28) is specified as A(a) = 1.0, A(b) = 0.7, and A(c) = 0.4. In addition we might use
the notion that a function maps a element x to a value f(x) to present A as a set of
ordered pairs of elements of X and their associated membership grades, 〈x,A(x)〉, so
that A = {〈a, 1.0〉 , 〈b, 0.7〉 , 〈c, 0.4〉}. Finally, we might present the values as a table:
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x A(x)
a 1.0
b 0.7
c 0.4

(5.3)

Example 30. Let X = {al, bo, cam} and define the fuzzy set Tall as follows, set µTall(al) =
1.0, µTall(bo) = 0.7, and µTall(cam) = 0.4. Thus al is completely Tall while bo is somewhat
Tall. On the other hand cam is not very Tall.

It is probably useful to point out that unlike probability, the notation used in books
and papers about fuzzy set theory is not standardized. The notation for fuzzy set
theory is different in almost every paper that one tries to read. (Fuzzy set theory is a
young discipline.) A fuzzy set was traditionally indicated by the tilde above the label,
such as Ã, that indicated that A was indeed a fuzzy set. Thus much of the early, and
current, literature includes phrases such as “the fuzzy set Ẽ”. It is more common,
however, for he current literature to omit the tilde. Besides the notation A(x) that
this book will use, common notation for a fuzzy set membership function include:
µA(x), mA(x), χA(x), µÃ(x), mÃ(x), χÃ(x), and Ã(x). Common synonyms for membership
function are membership grade, compatibility index, and characteristic function.

1

The statement A(b) = 0.7 is interpreted as saying that the membership grade of
b in the fuzzy set A is seven-tenths. The only difference between a traditional set
and a fuzzy set is the image of their membership functions. A traditional set has its
membership grades taking values in the set {0, 1}while a fuzzy set has its membership
grades in the unit interval [0, 1]. A standard set will be called a crisp set whenever it
is necessary to distinguish it from a fuzzy set. The universal set X is always a crisp
set.

The difference between the image sets U = [0, 1] and B = {0, 1} means that fuzzy
sets do not view the world in black and white but instead see the world in shades of
gray. All humans (except ideologues) know that the world is not made up of absolutes
but traditional mathematics is composed of idealized abstractions. This has forced
divisions that are not natural, and more important, these divisions are contrary to
the way humans represent and process information. For example consider a crisp
set B and a fuzzy set B both of which are to represent the concept blue. An object b,
such as a shirt in your closet, is either in B or it is not. Suppose that b1 is a tartan
plaid shirt, b2 is a white shirt, and b3 is a blue and green pinstripe shirt. For the crisp

1One particular notation that is outdated is Zadeh’s original fraction notation. It has the advantage of
being horizontal, which takes up less space, and is was easy to type back in the days before word
processors. This notation is a list of fractions that use + as a separator, but the + does not represent
addition, it simple separates terms. Each fraction has a denominator which is the element of the
fuzzy set under discussion and a numerator that specifies the membership value. Thus the fuzzy set A
specified by A(a) = 1.0, A(b) = 0.7, and A(c) = 0.4 is given as

A =
1.0

a
+

0.7

b
+

0.4

c
. (5.4)

We reiterate here that in the presentation of A in Eq. 5.4 the fraction does not indicate division and
the plus sign does not indicate addition! Instead the element below the bar has the membership grade
equal to the value above the bar and the plus sign only separates members of the list.

57



5. Fuzzy sets

Figure 5.2.: A fuzzy set C on a continuous domain X = [1, 10].

set B we must make a decision on which of these objects are ideally blue and which
are not. On the other hand the fuzzy set B allows for a graded membership that can
allow b1, b2, and b3 partial membership based on how much blue they contain, or how
much blue that a specific observer says that the shirts contain. The fuzzy set is much
more in line with the human representation. If a shirt is needed to match a pair of
blue-jeans then it may be that b3 is the best choice even if it would not have been
accepted for membership in the crisp set B of blue objects.

5.5. Fuzzy Set Operations

In this section we will define what it means for a fuzzy set to be contained in another
fuzzy set. We will also provide operators for fuzzy sets that correspond to “and” “or”,
and “not” of human logic. We will define a fuzzy intersection to represent “and”, a
fuzzy union to represent “or”, and a fuzzy complement to represent “not”. In fact we
will use the exact notation for fuzzy intersections, unions, and complements that we
used for crisp intersections, unions, and complements. This usage can be justified by
noticing that crisp sets are, in a sense, a special case of fuzzy sets. Both, crisp sets
and fuzzy sets can be defined using membership functions. The crisp set membership
values of zero and one are contained in the unit interval and crisp sets can be thought
of as fuzzy sets with a restricted image set. The definition of a fuzzy intersection will
be crafted so that if A and B have {0, 1} as their image set, and thus have no fuzziness
to them, then the fuzzy intersection of A and B behaves precisely like the intersection
of crisp sets. This will also be true for the fuzzy union, fuzzy complement, and the
fuzzy subset relation. Because of this we do not need to keep using the prefix “fuzzy”
to these operations. The fuzzy intersection is the crisp intersection whenever the
sets involved correspond to crisp sets, that is, have no fuzziness, no elements with
partial grades of membership.
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Figure 5.3.: Fuzzy sets A and B.

All the definitions for complements, unions, and intersections are given in terms of
membership functions. Thus to define a fuzzy complement Ac we define its member-
ship function in terms of the membership function of the fuzzy set A.

5.5.1. Subsets

A fuzzy set A is a subset of a fuzzy set B if A(x) is less than or equal to B(x) for all x in
X. In crisp set theory a subset has less things, while in fuzzy set theory a subset has
things to a lesser degree.

Definition 6 (Subset). Thus A ⊆ B if and only if

∀x ∈ X A(x) ≤ B(x). (5.5)

For A to be equal to B the membership values of A(x) and B(x) must be equal for all
x.

Example 31. If we have the fuzzy set A,

x A(x)
a 1.0
b 0.7
c 0.4

(5.6)
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from Example 29 then D = {〈a, 0.9〉 , 〈b, 0.0〉 , 〈c, 0.4〉},

x D(x)
a 0.9
b 0.0
c 0.4

(5.7)

is a fuzzy subset of A since:

A(a) = 1.0 ≥ 0.9 = D(a)
A(b) = 0.7 ≥ 0.0 = D(b)
A(c) = 0.4 ≥ 0.4 = D(c)

This is easier to see if we use a table to show both fuzzy sets:

x D(x) A(x) D(x) ≤ A(x)
a 0.9 1.0 1
b 0.0 0.7 1
c 0.4 0.4 1

(5.8)

then D(x) ⊆ A(x) if and only if the final comparison column is all ones, in computer
science 1 ≡ True and 0 ≡ False.

Definition (Set equality). A = B if and only if

∀x ∈ X A(x) = B(x). (5.9)

It is simple to show that A ⊆ B and A ⊇ B imply that A = B.
The class of all fuzzy subsets of the universe X is called the fuzzy power set. There

are an infinite number of fuzzy subsets of any non–empty universe.

The class of all fuzzy sets defined upon the universal set X is called the fuzzy power
set.

Definition 7 (Fuzzy power set). Suppose that X is a crisp universal set, let the class
of all fuzzy sets defined upon X be denoted F(X) and called the fuzzy power set.

Thus P(X) is the crisp power set and F(X) is the fuzzy power set.
Unfortunately it is impossible to give a simple example of a fuzzy power set since

it is infinite in size. Since we can not list all the real numbers between zero and one,
we can not list all the fuzzy subsets of a crisp set X = {a, b, c}.

5.5.2. Intersection

The intersection of two fuzzy sets was defined by Zadeh to be a fuzzy set C(x) =
(A ∩ B) (x) with membership function C(x) equal to the minimum of the values of the
membership grades of x in A and B.

Definition 8 (Fuzzy intersection). The intersection of fuzzy sets A and B is the fuzzy
set A ∩ B with a membership grade for every x ∈ X given by

(A ∩ B) (x) = min[A(x),B(x)] (5.10)
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Figure 5.4.: A ∩B, the intersection of fuzzy sets A and B.

for all x in X. The minimum operator is represented by the symbol “∧”so that min[a, b]
can also be written a∧ b and the intersection membership function is often written as

(A ∩ B) (x) = A(x) ∧ B(x) . (5.11)

Example 32. Consider the fuzzy set A and B given in the following table:

x A B
a 1.0 0.3
b 0.7 0.6
c 0.4 0.9

(5.12)

The intersection of two fuzzy sets A and B is a fuzzy set that contains an element x
of X at the minimum membership degree consistent with the membership grade of x
in A and of x in B. Since c is in A to the degree 0.4 and c is in B to the degree 0.9 we
know that c is in the intersection of the fuzzy sets A and B to the degree 0.4 since this
is the minimum of the two membership values. The complete result is the fuzzy set
A ∩ B with membership values as follows:

x A ∩ B
a 0.3
b 0.6
c 0.4

(5.13)

5.5.3. Union

The union of two fuzzy sets was defined by Zadeh to be a fuzzy set C(x) = (A ∪ B) (x)
with membership function C(x) equal to the maximum of the values of the member-
ship grades of x in A and B.
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Figure 5.5.: A ∪B, the union of fuzzy sets A and B.

Definition 9 (Fuzzy union). The union of fuzzy sets A and B is the fuzzy set A∪B with
a membership grade for every x ∈ X given by

(A ∪ B) (x) = max[A(x),B(x)] (5.14)

for all x in X. The maximum operator is represented by the symbol “∨”so that
max[a, b] can be written a ∨ b and the membership function for union can be written

(A ∪ B) (x) = A(x) ∨ B(x) . (5.15)

Example 33. Consider the fuzzy set A and B given in the following table:

x A B
a 1.0 0.3
b 0.7 0.6
c 0.4 0.9

(5.16)

The union of two fuzzy sets A and B is a fuzzy set that contains an element x of X
at the maximum membership degree consistent with the membership grade of x in
A and of x in B. Since c is in A to the degree 0.4 and c is in B to the degree 0.9 we
know that c is in the union of the fuzzy sets A and B to the degree 0.9 since this is the
maximum of the two membership values. The complete result is the fuzzy set A ∪ B
with membership values as follows:

x A ∪ B
a 1.0
b 0.7
c 0.9

(5.17)
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5.5.4. Complement

The complement represents the notion of “not” in human language.. The complement
of a set A is another set Ac that contains each element x in the universe X to the
opposite degree that the original set contained x.

Definition 10 (Fuzzy complement). The standard complement operator introduced
by Zadeh is

Ac(x) = 1− A(x) . (5.18)

This formula represents one of the most important differences between fuzzy set
theory and standard set theory. In set theory it is always true that a set and its
complement have nothing in common. In fuzzy set theory a set and its complement
can be identical.

Example 34. Consider again the fuzzy set A of Example (29):

x A(x)
a 1.0
b 0.7
c 0.4

(5.19)

The complement of a fuzzy sets A contains an element x of X at one minus the mem-
bership grade of x in A. Since c is in A to the degree 0.4 we know that c is in the
complement of the fuzzy sets A to the degree 0.6 since 0.6 = 1 − 0.4. The complete
result is the fuzzy set Ac with membership values as follows:

x Ac(x)
a 0.0
b 0.3
c 0.6

(5.20)

and the membership grade of x in the intersection of A and Ac, A ∩ Ac, is

x A ∩ Ac

a 0.0
b 0.3
c 0.4

(5.21)

This is a better picture of reality since, for instance, we could go to a movie and like
and dislike it at the same time. People often hold contradictory feelings, opinions
and evaluations about the same exact thing. And people often fluctuate in their
evaluations. For instance suppose we order an unusual dish at a restaurant. Different
diners may have conflicting opinions about the taste of a dish. An individual opinion
may change, jumping from one side of a decision to the other with each new bite. A
dish that seems too spicy initially can “grow on us.”
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Figure 5.6.: Ac, the complement of A.

5.5.5. Set difference

If we examine a typical Venn diagram of two overlapping crisp sets, A and B then
we see that there are essentially four pieces created by the intersection of A and B.
There is the area of overlap, labeled A∩B, and there is the area outside of both A and
B. Then there are the lobes labeled A\B and B\A (sometimes this is written A−B and
B−A). The operation shown here is set subtraction, also called relative complement.
In crisp sets, By A−B we mean a set containing all the elements in A that are not in
B. Thus, in crisp set theory, A \B = {x | x ∈ A andx /∈ B}. In fuzzy set theory this is not
a useful definition. In fuzzy sets we assign the membership grade of x ∈ X in A − B
as the difference of the membership grades, except that if the difference is negative,
we set the membership grade to zero.

Definition 11 (Fuzzy set difference). The difference of two fuzzy sets A and B is the
fuzzy set A− B with membership function

A \ B(x) = max [A(x)− B(x), 0] . (5.22)

Example 35. Consider the fuzzy sets A and B given in the following table:

x A B
a 1.0 0.3
b 0.7 0.6
c 0.4 0.9

(5.23)

The difference of two fuzzy sets A and B is a fuzzy set that contains an element x of
X at the difference of the membership grade of x in A and of x in B, or zero if this
difference is negative. Since c is in A to the degree 0.4 and c is in B to the degree 0.9
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Figure 5.7.: A−B, the complement of A relative to B.

we know that c is in the union of the fuzzy sets A and B to the degree 0.0 since the
difference is −0.5 which is replaced with zero. The complete result is the fuzzy set
A− B with membership values as follows:

x A− B
a 0.7
b 0.1
c 0.0

(5.24)

In crisp set theory, the simplest definition of set difference uses the formula A −
B ≡ A ∩ Bc however this equivalence is not true in fuzzy set theory. In general,
the distinguishing difference between crisp and fuzzy set theory is the behavior of
complementation. If a formula involves the complement then just because it is true
in crisp set theory does not mean it is true in fuzzy. We illustrate this fact immediately.

Example 36. Consider the universe X = {a, bc} with sets A = {a, b} and B = {a, c} .
Then A−B = {b} and A∩Bc = {b} which are identical. However consider the following
table showing the fuzzy sets A, B. A− B, and A ∩ Bc :

x A B A− B A ∩ Bc

a 1.0 0.3 0.7 0.7
b 0.7 0.6 0.1 0.4
c 0.4 0.9 0.0 0.1

(5.25)

The final two columns produce fuzzy sets with markedly different membership grades.
In fuzzy set theory A−B 6= A ∩Bc.
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5.6. Membership Grade Operations

5.6.1. Scalar cardinality

The scalar cardinality of a fuzzy set A is a count of the number of elements in A. Of
course some elements are not completely in A so the scalar cardinality of A is not
necessarily an integer.

Definition 12 (Scalar cardinality). The scalar cardinality of A is the sum of the de-
gree of membership of every element in A and is denoted |A|.

|A| =
∑
x∈X

A (x) (5.26)

Example 37. The scalar cardinality of the fuzzy set A,

x A(x)
a 1.0
b 0.7
c 0.4

(5.27)

from Example 29 is

|A| =
∑
x∈X

A (x) (5.28)

=
∑

x∈{a,b,c}

A (x) (5.29)

= A(a) + A(b) + A(c) (5.30)

= 1.0 + 0.7 + 0.4 (5.31)

= 2.1 (5.32)

5.6.2. Alpha–cut or α–cut

A fuzzy set is a collection of objects with various degrees of membership. Often
it is useful to consider those elements that have at least some minimal degree of
membership α. This is liking asking who has a passing grade in a class, or a minimal
height to ride on a roller coaster. We call this process an alpha–cut.

Definition 13. For every α ∈ [0, 1], a given fuzzy set A yields a crisp set Aα which
contains those elements of the universe X who have membership grade in A of at
least α:

Aα = {x ∈ X | A(x) ≥ α}

We can not emphasize enough that an alpha–cut of a fuzzy set is not a fuzzy set, it
is a crisp set.
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Example 38. Consider the fuzzy set A given in the following table:

x A
a 1.0
b 0.7
c 0.4

(5.33)

then the α–cut of A at α = 0.5 is
A0.5 = {a, b}

since A(a) = 1.0 ≥ 0.5 and A(b) = 0.7 ≥ 0.5 but A(c) = 0.4 � 0.5

Since α < β implies Aα ⊇ Aβ the set of all distinct α–cuts of any fuzzy set forms a
nested sequence of crisp sets.

Remark 1. Klir champions the use of αA for the alpha cut since Aα could be inter-
preted as an exponent. While this is a salient point, the majority of books and papers
in fuzzy set theory use Aα as the notation for an alpha–cut.

The image set of A, I(A) (or, as it is sometimes denoted, A[X]), is the image of
the membership function µA. It consists of all values α in the unit interval such that
A(x) = α for some x ∈ X.

Definition 14 (Image set). The image set of A is the set of all membership grades of
x ∈ X in A:

I(A) = {A(x) | x ∈ X} . (5.34)

All the distinct alpha–cuts of a fuzzy set A are produced by values of alpha in the
image set of A.

Example 39. Consider the fuzzy set A given in the following table:

x A
a 1.0
b 0.7
c 0.4

(5.35)

The image set of A is I(A) = {0.4, 0.7, 1.0}. The following three alpha—cuts are all the
distinct sets that can be produced from A using alpha–cuts:

A1.0 = {a} (5.36)

A0.7 = {a, b} (5.37)

A0.4 = {a, b, c} (5.38)

Remark 2. Some books and papers will call an alpha–cut a cut–set and/or a level–
set. Unfortunately Klir uses level set as the name for the image of the membership
function.

In a certain sense, the three equations, 5.36—5.38, allow us to reconstruct the fuzzy
set A from its pieces. We assign the membership grade of a to be the largest value
of alpha such that a is in the alpha–cut associated with that value. In the discrete
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case this is simply the maximum value in the image set such the element is in the
associated alpha–cut. As anyone who has taken calculus know, the infinity of the real
numbers makes things harder to define easily.

Theorem 1 (Decomposition). Given an arbitrary fuzzy set A, it is uniquely repre-
sented by the associated sequence of its α–cuts via the formula

A(x) = sup
α∈[0,1]

α · χAα(x) (5.39)

where χAα denotes the characteristic function of the crisp set Aα and sup designates
the supremum (or maximum, when the image set I(A) is finite) which is the largest
value the expression attains as α ranges over the unit interval.

The characteristic function of an alpha–cut is either one or zero, depending on
whether x is in the alpha–cut or not. When we multiply α by zero it will not be the
maximum value. This formula, in essence, picks out the largest value of alpha such
that x ∈ Aα.

Equation (5.39) is usually referred to as a decomposition theorem for fuzzy sets
Zadeh (1971). It establishes an important connection between fuzzy sets and crisp
sets. This connection provides us with a criterion for generalizing properties of crisp
sets into their fuzzy counterparts. To generalize to fuzzy set theory a property es-
tablished for crisp set theory, this property should be preserved (in the crisp sense)
in all α-cuts of the fuzzy sets involved. For example, all α-cuts of a convex fuzzy
sets should be convex crisp sets. Each α-cut of a properly defined fuzzy equivalence
relation (or fuzzy compatibility relation, fuzzy ordering relation, etc.) should be an
equivalence relation (or compatibility relation, ordering relation, etc., respectively)
in the classical sense. A property of a fuzzy set that is preserved in all its α-cuts is
called a cutworthy property.

Example 40. Let X = {0, 1, 2, . . . , 29, 30}

B(x) =
30x− x2

225
(5.40)

Then B(0) = 0, B(5) = 0.56, B(15) = 1, B(20) = 0.89, etc.

The α cut of B at α = 0.7 is a crisp set containing all those elements x ∈ X whose
membership grade is greater than or equal to 0.7, that is Bα = {7, 8, 9, . . . , 22, 23}.

Most proofs in this book are located in the appendices. However the following the-
orem is important enough to include in place. It shows that a fuzzy set is completely
characterized by its alpha–cuts.

Theorem 2. Two fuzzy sets are equal if and only if all their corresponding α cuts are
equal.

Proof. We are trying to prove that :

∀α : Aα = Bα ←→ A = B. (5.41)

First let us show that : A = B → Aα = Bα. When we say that A = B we mean that
their membership functions are identical for every x ∈ X. First Aα = {x | A(x) ≥ α} and
Bα = {x | B(x) ≥ α} but A(x) = B(x) for all x so Aα = Bα for all α.
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Figure 5.8.: The membership grade of the x values 0, 1, 2, . . . , 30 in the fuzzy set B.

To show the reverse, that : ∀α Aα = Bα → A = B suppose that ∀α Aα = Bα but A 6= B.
But A 6= B if and only if there exists some y ∈ X such that A(y) 6= B(y). Without loss of
generality assume that A(y) < B(y) and let γ = B(y). It must be that y /∈ Aγ but y ∈ Bγ.
Then the α-cuts of A and B are not identical, and this is a contradiction.

The strong alpha cut, Aα+ , is defined to be all those elements that have membership
strictly greater than alpha,

Aα+ = {x | A(x) > α}. (5.42)

A couple of alpha–cuts are special. The strong alpha–cut at zero contains all the
elements of a fuzzy set with positive membership grade. This is called the support
of the fuzzy set. The alpha–cut at one of a fuzzy set contains all those elements of a
fuzzy set with complete membership. This is called the core of a fuzzy set.

Definition 15 (Support). The support of a fuzzy set is the strong alpha-cut at zero:

S(A) = A0+ (5.43)

= {x | A(x) > 0} . (5.44)

Hence it is that subset of the domain which has positive membership grade in a fuzzy
set.

Example 41. The support of A (whose membership function is given in 5.3) is {a, b, c}
and the support of B (whose membership function is given in 5.40) is {2, 3, 4, . . . , 28, 29} .

Definition 16 (Core). The core, peak or mode of a fuzzy set is the alpha-cut at one:

C(A) = A1. (5.45)

= {x | A(x) = 1} . (5.46)
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Figure 5.9.: Alpha-cut of a fuzzy set C an a continuous domain X.

Example 42. The core of A is {a} and the core of B is {15} .

In the image set of a fuzzy set two membership grades are especially important,
the smallest and the largest. The smallest is called the plinth of the fuzzy set and the
largest is called the height of a fuzzy set.

Definition 17 (Height). The height of a fuzzy set A, h(A), is the maximum or supreme
membership grade achieved by A(x) over the domain of X :

h(A) = sup
x∈X

(x) . (5.47)

If the height of a fuzzy set is equal to 1.0 then we call that fuzzy set normal .

Example 43. The height of A is 1.0 and the height of B is 1.0. Thus they are both
normal fuzzy sets.

Definition 18 (Plinth). The plinth of a fuzzy set A, p(A), is the minimum, or infimum,
membership grade achieved by A(x) over the domain of X :

p(A) = inf
x∈X

(x) . (5.48)

Example 44. The plinth of A is 0.4 and the plinth of B is 0.0.

Definition 19 (Normal). A fuzzy set is normal if there is some x ∈ X such that its
membership grade in the fuzzy set is 1.0.

5.7. Possibility Theory

5.7.1. Possibility distributions

Lotfi Zadeh, the architect of fuzzy set theory, is also responsible for the creation
of possibility theory which he introduced in the paper “Fuzzy sets as a basis for a
theory of possibility,” Zadeh (1978) Zadeh interpreted a fuzzy set B, representing a
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proposition B, as a fuzzy restriction on the domain set X. He then set the possibility
of B being X is equal to the fuzzy restriction grade B(X). In many ways the literature
of possibility theory is also the literature of fuzzy sets. Possibility theory is special
in two ways. First, it is assumed that there is first element that is totally possibly B.
Second it is assumed that each subsequent element has a smaller degree of possibility
of being B.

Formally a possibility distribution, q, is a mapping from some universal set X into
the unit interval,

q : X → I .

If |X| = n then qi = q(xi), I ∈ Nn, will designate an arbitrary element in the ordered
n—tuple

q = 〈q1, q2, . . . , qi, . . . , qn〉

with
1 = q1 ≥ q2 ≥ . . . ≥ qi ≥ . . . ≥ qn ≥ 0

Just as probabilities can be derived from a finite set of frequencies by dividing by
their sum, possibilities can be derived from any finite set of non-negative numbers by
dividing by the maximum and re-ordering the universal set.

Remark 3. Many applications are concerned with using the paradigms of possibility
theory to process real world data. Data does not come pre-sorted and when dealing
with data derived from an image the researcher is not at liberty to re-arrange the
image, a pixel’s original position is an important piece of information.

Example 45. If a fuzzy set B (for “blue”) is defined with membership values for five
clothing items labeled ẋ1, ẋ2, ẋ3, ẋ4, ẋ5 then it is feasible to interpret the membership
grade of the item tagged with the label ẋ3 as a gauge of the possibility of ẋ3 being blue.
This value can range from zero, or impossible, to one, or surely possible. Numerical
data, when normalized and treated as a possibility distribution, has two essential
characteristics, relative magnitude and absolute order. If ẋi is again an object of
clothing and B is a fuzzy set representing the verbal concept blue then by some
process one might calculate the evaluations B(ẋ1) = 0.3, B(ẋ2) = 0.2, B(ẋ3) = 0.4, B(ẋ4) =
1.0 and B(ẋ5) = 0.7 for the membership grades of the elements ẋ1, ẋ2, ẋ3, ẋ4, and ẋ5.
These values might represent the subjective opinion of an expert on the quality or
degree of blueness, or they may represent an absolute measurement of the amount
of blue light registered by some instrumentation. In either case the values must
be non-negative and one evaluation must be one for the data to be considered as a
possibility distribution.

If all the evaluations are positive but none are equal to one the fuzzy set can be
normalized. This normalization is almost always done by dividing through all the
blueness values by the maximum value. As shall be seen in the following sections,
this is not the only method of deriving possibility distributions from fuzzy sets. Raw
data can provide a possibility distribution if there is some (monotone) transformation
of the data values into the unit interval with at least one value mapped to a possibility
grade of 1.

Since, in Zadeh’s interpretation, a possibility distribution is induced by a fuzzy set
we have reorder the universal set based on fuzzy membership grades. This gives the
permutation x1 = ẋ4, x1 = ẋ5, x3 = ẋ3, x4 = ẋ1, x5 = ẋ2 and the possibility distribution
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q = 〈1.0, 0.7, 0.4, 0.3, 0.2〉 .

q(x1) = B(ẋ4) = 1.0,

q(x2) = B(ẋ5) = 0.7,

q(x3) = B(ẋ3) = 0.4,

q(x4) = B(ẋ1) = 0.3 and

q(x5) = B(ẋ2) = 0.2 .

5.7.2. Possibility measures

A possibility distribution is a function from a set X into the unit interval with some
element of the universe having membership grade one. This distribution induces a
possibility measure upon the subsets of X via the formula

Q(A) = max
x∈A

q(x) (5.49)

if X is finite. If X is infinite we must use sup for max in Eq. (5.49). The possibility
measure Q is obviously a function from the power set of X into the interval [0, 1], that
is, Q : P(X)→ U.

A possibility measure can be defined directly without recourse to a possibility dis-
tribution. A possibility measure is a mapping that is zero on the empty set,

Q(∅) = 0

one on the universal set,
Q(X) = 1

and such that the possibility measure of the union of two sets is equal to the maximum
of the possibility measures of the two component sets,

Q(A ∩B) = max[Q(A),Q(B)]

Given a possibility measure Q it is easy to construct its associated possibility distri-
bution from the formula

q(xi) = v({xi})

Eq. (5.49) gives the formula for constructing a possibility measure from its associated
possibility distribution.

Furthermore, it is easy to show that

Q(A) + Q(Ac) ≥ 1 , (5.50)

max[Q(A),Q(Ac)] = 1 . (5.51)

Ordered possibility distributions of the same length can be partially ordered in the
following way: given two possibility distributions

qi = 〈qi1, qi2, . . . , qin〉
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and
qj = 〈qj1, qj2, . . . , qjn〉

we define
qi ≤ qj if and only if qik ≤ qjk

for all k = 1, 2, ..., n. This partial ordering forms a lattice whose join, ∨, and meet, ∧,
are defined, respectively, as

qi ∨ qj = 〈max[qi1, qj1],max[qi2, qj2], . . . ,max[qin, qjn]〉

and
qi ∧ qj = 〈min[qi1, qj1],min[qi2, qj2], . . . ,min[qin, qjn]〉

for all pairs of possibility distributions of the same length n. The smallest possibility
distribution is 〈1, 0, ..., 0〉, the greatest one is 〈1, 1, ..., 1〉; their counterparts expressing
the basic probability assignment are 〈1, 0, ..., 0〉 and 〈0, 0, ..., 0, 1〉, respectively. We can
see from this that in possibility theory the expression of full certainty and, contrary
to probability theory, also the expression of total ignorance are exactly the same as
in evidence theory.

Finally we note that the literature on possibility theory uses either P , Π, or Q to rep-
resent a possibility measure and p, π, or q to represent the corresponding possibility
distribution. This book will always use Q and q or the ordered possibility measure
and distribution.

5.8. Advanced Types of Fuzzy Sets

For some applications, it is useful to define fuzzy sets in terms of more general forms
of membership grade functions. An important form is

A : X → L, (5.52)

where L denotes a lattice. Fuzzy sets defined by functions of this form are called
L-fuzzy sets. Lattice L may, for example, consist of a class of closed intervals in [0, 1].
Membership degrees are in this case defined imprecisely, by closed sub-intervals of
[0, 1]. Fuzzy sets with this property are called interval–valued fuzzy sets. When L is a
class of fuzzy numbers defined on [0, 1], we obtain fuzzy sets of type-2 . We will have
little use of these notions in this book.

5.9. Notes

Most of Zadeh’s papers are collected in Klir and Yuan (1996). Good books on fuzzy set
theory include Klir and Yuan (1995), Dubois and Prade (1980a), and Klir and Folger
(1988). For general applications the best books, other than the one you are holding,
are Jang et al. (1997), Kandel (1986), Zimmermann (1996), Kaufmann (1975), and
Kaufmann and Gupta (1985).
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5.10. Homework

Let us define the universal sets

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, (5.53)

Y = {a, b, c}, (5.54)

and
Z = {α, β, γ, δ} . (5.55)

Next we present the membership functions of the fuzzy set A, B, C, D,E, and F.
The membership functions for E and F are presented a list of ordered pairs with the
interpretation of 〈1, 0.2〉 being that the membership grade of 1 in E is 0.2, or E(1) = 0.2.
If an element of the domain set is not listed the interpretation is that the membership
grade is zero. Thus the membership grade of 7, which is in X, in E is 0.0. Fuzzy sets
defined on X use the variable x and likewise we use y and z for arbitrary elements of
Y and Z.

A(x) =
x

10

B(x) =
|x− 5|

5

C(x) =

{
9−|2x−9|

8 1 ≤ x ≤ 8

0 otherwise

D(x) = 0.8

E(x) = {〈1, 0.2〉 , 〈2, 0.6〉 , 〈3, 0.4〉}
F(y) = {〈a, 0.3〉 , 〈b, 0.7〉 , 〈c, 0.9〉}
G(z) = {〈α, 0.5〉 , 〈β, 0.8〉 , 〈γ, 0.35〉}

Given the above information, try to answer the following questions.

1. For the sets, A through G, what universe do they belong to?

2. What is Ac ?

3. What is Bc ?

4. What is Cc ?

5. What is Gc ?

6. What is A ∪ B ?

7. What is A ∪ C ?

8. What is B ∪ C ?

9. What is A ∪ Bc ?

10. What is A ∪ Cc ?
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11. What is B ∪ Cc ?

12. What is A ∪ Ac ?

13. What is A ∩ B ?

14. What is A ∩ C ?

15. What is B ∩ C ?

16. What is A ∩ Bc ?

17. What is A ∩ Cc ?

18. What is B ∩ Cc ?

19. What is A ∩ Ac ?

20. What is F ∩ G ?

21. What is A \ B and B \ A.

22. What is A \ C and C \ A.

23. What is B \ C and C \ B.

24. How would you go about defining A× B ?

25. What is the image set, core, support, height, and plinth of A?

26. What is the image set, core, support, height, and plinth of B?

27. What is the image set, core, support, height, and plinth of C?

28. What is the image set, core, support, height, and plinth of D?

29. What is the image set, core, support, height, and plinth of E?

30. What is the image set, core, support, height, and plinth of G?

31. What is Aα and Aα+

a) if α = 0.0?

b) if α = 0.2?

c) if α = 0.4?

d) if α = 0.6?

e) if α = 0.8?

f) if α = 1.0?

32. What is Bα and Bα+

a) if α = 0.0?

b) if α = 0.2?

c) if α = 0.4?
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d) if α = 0.6?

e) if α = 0.8?

f) if α = 1.0?

33. What is Cα and Cα+

a) if α = 0.0?

b) if α = 0.2?

c) if α = 0.4?

d) if α = 0.6?

e) if α = 0.8?

f) if α = 1.0?

34. Who is Lotfi Zadeh?

35. Why fuzzy sets?
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6. Fuzzy operators

6.1. Introduction

Many famous logicians of 20th century introduced multi-valued logics. The Polish lo-
gician and philosopher Jan Łukasiewicz (1920) introduced a three valued logic, using
true, false, and a third value to represent the unknown. The stimulus for this cre-
ation was Aristotle’s paradox of the sea battle, “There will be a sea battle December
12, 2012” is neither true nor false, it is unknown. Even worse, the day after tomor-
row, we will know whether or not the statement about the sea battle is true or not.
Since something that is true must always have been true, and always will be true, the
statement must have a truth value that annot be determined. But then we must ask
ourselves if any truth value can be determined?

Another famous mathematician, the Emil L. Post (1921) also introduced n-valued
logics, where n ≥ 2. In 1932 Jan Łukasiewicz and Alfred Tarski introduced another,
slightly different n-valued logic. The most famous logician of the 20th century, Kurt
Gödel, in 1932 defined a system of multi-valued logics.

Not surprisingly, they did not all introduce identical systems, see 3.6. For example,
they did not all agree on how to calculated logical and with their new fractional values.
Thus it is not surprising that researchers in fuzzy set theory have introduced more
than one way to model and.

Fuzzy set theory is a new discipline, and that has some advantages and some draw-
backs. The drawbacks include multiple names and notations for identical objects.
The advantages are an appreciation for innovation and originality.

This chapter will focus on operators. Operators take one, two, or more fuzzy sets
and produce another fuzzy set. Most of the operators will take two fuzzy sets and pro-
duce a third fuzzy set as a result, these type of operators are called binary operators.
We have already seen many of these operators in the earlier chapters of this book.
The min operator that is used for the standard intersection is one example. If the
fuzzy sets are fuzzy numbers then addition is another binary operator that takes two
fuzzy numbers and produces their sum. An operator that takes only one argument is
called a unary operator. The standard fuzzy complement is a unary operator.

Let us go back to pure set theory. If x ∈ A and x ∈ B then it is in A ∩ B, otherwise
x is not in the intersection of A and B. If we write a table in terms of characteristic
functions for the sets A, B, and the resulting characteristic function of A ∩ B the
intersection operator we get:

Note that the standard fuzzy operator for intersection, min, will produce the same
results in the third column given the membership grades in the first two columns.
However multiplication will also produce these results. The question then is, if we
replace the min operator with multiplication do we produce a consistent theory. If we
do in fact replace min with multiplication, then what would be the proper replacement
for the max operator? And how about the complement operator? Or should we have
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asked these questions another way round, and replaced max first?

In this chapter we will limit ourselves to variations on the basic set operators inter-
section, union and complementation. In addition we will take a brief look at aggre-
gation operators, operators that do not have a direct correspondence in classical set
theory.

6.2. Fuzzy Operators

A single fuzzy set can be operated on by the application of a fuzzy complement. Two
fuzzy sets can be combined by one of three types of aggregating operations: fuzzy
intersection, unions, and averaging operations. Multiple fuzzy sets can be combined
with aggregation operators. Operations of each of these types are not unique. The
whole scope of operations of each type can be conveniently captured by a class of
functions distinguished from one another by distinct values of a parameter taken
from a specific range of values. The choice of a particular operation is determined by
the purpose for which it is used.

6.2.1. Standard fuzzy set operators

By far, the most important and common fuzzy complement, intersection and union
operations are those defined by the formulas

Ac(x) = 1− A(x), (6.1)

(A ∩ B) (x) = min[A(x),B(x)] = A(x) ∨ B(x), (6.2)

(A ∪ B) (x) = max[A(x), b(x)] = A(x) ∧ B(x). (6.3)

Axiomatic characterization of these operations, which are usually referred to as stan-
dard fuzzy operations, was investigated by Bellman and Giertz (1973). Any property
generalized from classical set theory into the domain of fuzzy set theory that is pre-
served in all α-cuts for α ∈ (0, 1] is called cutworthy. An arbitrary binary operator ? is
idempotent if a ? a = a. The minimum operation is the only fuzzy intersection that is
idempotent and cutworthy; similarly, the maximum operation is the only union that
is idempotent and cutworthy. No fuzzy complement is cutworthy.

χA(x) χB(x) χA∩B(x)

0 0 0
0 1 0
1 0 0
1 1 1

Table 6.1.: A table for the intersection operator.
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Figure 6.1.: Illustrating the standard fuzzy operators.
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Figure 6.2.: Standard complement function.

6.3. Fuzzy Complement

Before we introduce alternatives to Zadeh’s original operator for complements we
should determine what kinds of unary operators fulfill our notions of what the oppo-
site of a fuzzy set should be. One of the first conditions is that when a fuzzy set has
all its membership values in the set {0, 1} then the fuzzy set is essentially a crisp set.
In this case, the complement should be the same as the complement of a crisp set,
so that zero becomes one and vice versa. Second of all the membership degree of an
element x in the complement of a fuzzy set A(x) should be a local phenomena, that is,
it should depend only on the degree of membership of x in the original fuzzy set A(x).
Finally the more x is in A(x) the less x is in the complement of A(x). These ideas are
gathers together in the following requirements.

An arbitrary complement operators, c : [0, 1]→ [0, 1], must satisfy the following three
axioms:

(c1) Membership dependency — The membership grade of x in the complement of A
depends only on the membership grade of x in A.

(c2) Boundary condition — c(0) = 1 and c(1) = 0, that is c behaves as the ordinary
complement for crisp sets.

(c3) Monotonicity — For all a, b ∈ [0, 1], if a < b, then c(a) ≥ c(b), that is c is monotonic
nonincreasing.

Two additional axioms, which are usually considered desirable, constrain the large
family of functions that would be permitted by the above three axioms; they are:

(c4) Continuity — c is continuous.
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Figure 6.3.: Sugeno complement functions.

(c5) Involution — c is involutive, that is c(c(a)) = a.

The standard fuzzy complement function is:

c(a) = 1− a

and it is graphed in Fig. (6.2).
Some of the functions that conform to these five axioms besides the standard fuzzy

complement are in the Sugeno class of fuzzy complements defined for all a ∈ [0, 1] by

c[λ](a) =
1− a

1 + λa
, (6.4)

with λ ∈ (−1,∞). The curves generated by the Sugeno complement for various values
of λ are illustrated in Fig (6.3).

The Yager class of fuzzy complements defined for all a ∈ [0, 1] by

c[w](a) = (1− aw)1/w, (6.5)

with w ∈ (0,∞). . The curves generated by the Yager complement for various values
of w are illustrated in Fig (6.4).

Observe that the standard fuzzy complement, c(a) = 1−a, is obtained as the Sugeno
complement at zero, c[λ = 0] and as the Yager complement at one, c[w = 1].

An example of fuzzy complements that conforms to (c1)–(c3) but not to (c4) and
(c5) are the threshold fuzzy complements

c[t](a) =

{
1 when a ∈ [0, t]
0 when a ∈ (t, 1]

, (6.6)
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Figure 6.4.: Yager complement functions.

with t ∈ [0, 1].
Subsequently, we shall write Ac for an arbitrary complement of the fuzzy set A; its

membership function is Ac(x) = c(A(x)).
An equilibrium, ec, of a fuzzy complement c, if it exists, is a number in [0, 1] for which

c(ec) = ec. Every fuzzy complement has at most one fuzzy equilibrium and if a fuzzy
complement is continuous (i.e., if it satisfies axioms (c1)–(c4)), the existence of its
equilibrium is guaranteed Klir and Yuan (1996). For example, the equilibrium of fuzzy
complements in the Yager class (6.5) are

ec[w] = 0.5
1
w (6.7)

for each w ∈ (0,∞).

6.4. Fuzzy Set Intersections

In the previous section we saw that complementation can be based on a function c
that manipulates membership values. Using the same line of reasoning, intersection
of fuzzy sets A and B can be based upon a function t that that takes two arguments.
The function t takes the membership grade of x in the fuzzy set A and the membership
grade of x in the fuzzy set B and returns the membership grade of x in the fuzzy set
A ∩ B.

As was done for the complement, we will propose a reasonable axiomatic skeleton.
The axioms will capture the basic notions of how intersection must operate on fuzzy
sets. First off, fuzzy set intersection should work the same as intersection whenever
the fuzzy sets have membership grades restricted to the set {0, 1} , as previously de-
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Figure 6.5.: Graphs of the max and min functions.

scribed in Table (6.1). Since A ∩ B = B ∩ A the function should be commutative. Since
(A ∩ B)∩C = A∩ (B ∩ C) the function should be associative. Lastly the more x is in fuzzy
set A and B the more it should be in A ∩ B.

The intersection of two fuzzy sets must be a function that maps pairs of numbers
in the unit interval into the unit interval [0, 1], t : [0, 1] × [0, 1] → [0, 1]. It is now well
established that triangular norms or t-norms do possess all properties that are intu-
itively associated with fuzzy intersections. These functions are, for all a, b, c, d ∈ [0, 1],
characterized by he following axioms:

(i1) Boundary condition — t(1, a) = a.

(i2) Monotonicity — t(a, b) ≤ t(c, d) whenever a ≤ c and b ≤ d.

(i3) Commutativity — t(a, b) = t(b, a).

(i4) Associativity — t(a, t(b, c)) = t(t(a, b), c).

It turns out that functions that obey these four rules had been extensively studied in
the literature of probability, long before the creation of fuzzy set theory. Functions
that possess properties (i1) through (i4) were given the name t-norm Menger (1942),
short for triangular-norm.

Axiomatic skeletons are always designed to be as sparse as possible. This aids in
the mathematical application of the axioms, there is less to prove if there are fewer
axioms. To prove a function is a t-norm we need to show four things. Five would
be harder. This sparseness, however means that the axioms do not always translate
directly our intuitive notions. Thus, in most books, right after the axioms come proofs
to show that the axioms imply the desired properties. For example let us prove that
the axioms force the function t to generate the Table (6.1).

Theorem 3. t(0, 0) = t(0, 1) = t(1, 0) = 0 and t(1, 1) = 1.
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Figure 6.6.: Schweizer and Sklar t-norm and t-conorm functions for p = 1.

Proof. By axiom (i1) t(1, a) = a so set a = 1 and we have that t(1, 1) = 1.
By axiom (i1) t(1, a) = a so set a = 0 and we have that t(1, 0) = 0.
Commutativity (i3) says that if t(1, 0) = 0 then t(0, 1) = 0.
Finally 0 ≤ 1 and 1 ≤ 1 so axiom (i2) says that t(0, 0) ≤ t(1, 0) = 0 but since t(a, b)

cannot be negative the only value less than or equal to zero is zero we conclude that
t(0, 0) = 0.

The largest t-norm is the minimum function and the smallest is the drastic product

tmin(a, b) =

 a when b = 1
b when a = 1
0 otherwise

, (6.8)

in the sense that if t is any t-norm then for any a, b ∈ [0, 1]

tmin(a, b) ≤ t(a, b) ≤ min(a, b). (6.9)

One of the most commonly applied alternative t-norms is the algebraic product:

tp(a, b) = a · b, (6.10)

which is calculated by simply multiplying a and b. Since multiplication is commutative
and associative, axioms i3 and i4 are satisfied by tp. Multiplication of nonnegative
numbers is monotonic so axiom i2 is satisfied. Finally tp(1, a) = 1 · a = a so that axiom
i1 is satisfied. Thus tp is a t− norm.

Another common alternative to the standard intersection operator min is the bounded
difference:

tb(a, b) = max(0, a+ b− 1) . (6.11)

Since tb(1, a) = max(0, 1 + a − 1) = a the bounded difference satisfies axiom i1. The
function max(0, a+ b− 1) is obviously commutative (since a+ b− 1 = b+ a− 1) and since
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a+b−1 and max are both monotone, their composition is monotone. Thus the bounded
difference satisfies axioms i3 and i2.

To show that the bounded difference is associative, and satisfies axiom i4, we will
show that tb(a, b, c) = max(0, a+ b+ c−2). The following algebraic manipulation is based
on the fact that, for any real number c, if a < b then a + c < b + c and if a > b then
a+ c > b+ c. This means that max(a, b) + c = max(a+ c, b+ c).

First let us examine the left side of the equality in axiom i4:

tb(a, tb(b, c)) = max(0, a+ tb(b, c)− 1) (6.12)

= max(0, a+ max(0, b+ c− 1)− 1) (6.13)

= max(0,max(a, a+ b+ c− 1)− 1) (6.14)

= max(0,max(a− 1, a+ b+ c− 2)) (6.15)

= max(0, a− 1, a+ b+ c− 2) (6.16)

but, a− 1 ≤ 0 so that tb(a, tb(b, c)) = max(0, a+ b+ c− 2).
Next we examine the right side of the equality in axiom i4:

tb(tb(a, b), c) = max(0, tb(a, b) + c− 1) (6.17)

= max(0,max(0, a+ b− 1) + c− 1) (6.18)

= max(0,max(c, a+ b+ c− 1)− 1) (6.19)

= max(0,max(c− 1, a+ b+ c− 2)) (6.20)

= max(0, c− 1, a+ b+ c− 2) (6.21)

but, c− 1 ≤ 0 so that tb(tb(a, b), c) = max(0, a+ b+ c− 2).
We conclude that tb(a, tb(b, c)) = max(0, a+ b+ c− 2) = tb(tb(a, b), c).
It can also be shown that the basic t-norms have the following order:

tmin(a, b) ≤ max (0, a+ b− 1) ≤ ab ≤ min(a, b) (6.22)

The most common t-norms are given in Table (6.2).

Name t-norm

standard intersection t(a, b) = min(a, b)

algebraic product tp(a, b) = ab

bounded difference tb(a, b) = max(0, a+ b− 1)

drastic product tmin(a, b) =

 a when b = 1
b when a = 1
0 otherwise

Table 6.2.: Common t-norms.

It is sometimes convenient to think of a t-norm as binary operator, and use an in-
line notation when applying it to a specific problem Thus instead of writing t(a, b)
we would write a ∧t b, or a t b, or just a ∧ b, with the understanding that ∧ is some
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intersection operator modeled by a t-norm t.

6.5. Fuzzy Set Unions

Similar ideas from the section on fuzzy set intersections lead to the following ax-
iomatic skeleton for a function s to model the union operator. The union of two
fuzzy sets must be a function that maps pairs of numbers in the unit interval into the
unit interval, s: [0, 1] × [0, 1] → [0, 1]. As is well known, functions known as triangular
conorms or t-conorms, possess all the properties that are intuitively associated with
fuzzy unions. They are characterized for all a, b, c, d ∈ [0, 1] by the following axioms:

(u1) Boundary condition — s(0, a) = a.

(u2) Monotonicity — s(a, b) ≤ s(c, d) whenever a ≤ c and b ≤ d.

(u3) Commutativity — s(a, b) = s(b, a).

(u4) Associativity — s(a, s(b, c)) = s(s(a, b), c).

The smallest t-conorm is the maximum function and the largest is the drastic sum
sometimes called the drastic union:

smax(a, b) =

 a when b = 0
b when a = 0
1 otherwise

, (6.23)

in the sense that if s is any t-conorm then for any a, b ∈ [0, 1]

max(a, b) ≤ s(a, b) ≤ smax(a, b). (6.24)

One of the most commonly applied alternative s-norms is the algebraic sum:

sp(a, b) = a+ b− ab, (6.25)

which is also called the probabilistic sum.
Another common alternative to the standard union operator max is the bounded

sum:
sb(a, b) = min(1, a+ b) . (6.26)

It can also be shown that the basic t-conorms have the following order:

smax(a, b) ≥ min (1, a+ b) ≥ a+ b− ab ≥ max(a, b) (6.27)

The most common t-norms are given in Table (6.3).
It is sometimes convenient to think of a t-conorm (sometimes called an s-norm) as

binary operator, and use an in-line notation when applying it to a specific problem
Thus instead of writing s(a, b) we would write a ∨s b, or a s b, or just a ∨ b, with the
understanding that ∨ is some union operator modeled by a t-conorm s.

86



6.6. Residuum operator Omega operators

Name t-conorm

standard union s(a, b) = max(a, b)

algebraic sum sp(a, b) = a+ b− ab

bounded sum sb(a, b) = min(1, a+ b)

drastic sum smax(a, b) =

 a when b = 0
b when a = 0
1 otherwise

Table 6.3.: Common t-conorms.

6.6. Residuum operator Omega operators

Let t be a continuous t-norm. Define the residuum operator, also called the ω (omega)
operator generated by t, ωt, for every a, b ∈ [0, 1] by the following definition

ωt(a, b) = sup {x ∈ [0, 1] | t(a, x) ≤ b} . (6.28)

The residuum operator operator is in one sense a model of material implication. Ba-
sically, we ask how much evidence (x) can we add to a before we break the threshold
of belief b. It will play an important role in both the chapters on fuzzy relations, Ch.
(8), and on fuzzy implication, Ch. (15).

6.7. Combinations of Operations

In classical set theory, the operations of intersection and union are dual with respect
to the complement in that they satisfy the De Morgan laws.

1. The complement of the intersection of A and B equals the union of the comple-
ment of A and the complement of B.

2. The complement of the union of A and B equals the intersection of the comple-
ment of A and the complement of B.

(A ∩B)
c

= Ac ∪Bc

(A ∪B)
c

= Ac ∩Bc

Obviously, only certain combinations of t-norms, t-conorms, and fuzzy complements
satisfy the duality. We say that a t-norm t and a t-conorm s are “dual with respect to
a fuzzy complement c” if and only if

c(t(a, b)) = s(c(a), c(b)) (6.29)

and
c(s(a, b)) = t(c(a), c(b)) (6.30)
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6. Fuzzy operators

Figure 6.7.: Frank t-norm and t-conorm functions for p = 2.

These equations define the De Morgan laws for fuzzy sets. Let the triple (t,s, c)
denote that t and s are dual with respect to c, and let any such triple be called a ”dual
triple”.

The following t-norms and t-conorms are dual with respect to the Standard Fuzzy
Complement c (i.e., dual triples):

t-norms t-conorms complement

min(a, b) max(a, b) c

ab a+ b− ab c

max(0, a+ b− 1) min(1, a+ b) c

Imin(a, b) Umax(a, b) c

Table 6.4.: Triples of operators

Theorem 4. The triples (min,max, c) and (Imin, Umax, c) are dual with respect to any
fuzzy complement c.

Theorem 5. Given a t-norm t and an involutive fuzzy complement c, the binary oper-
ation s on [0, 1] defined by

s(a, b) = c(t(c(a), c(b))) (6.31)

for all a, b in [0, 1] is a t-conorm such that (t,s, c) is a dual triple.

Theorem 6. Given a t-conorm s and an involutive fuzzy complement c, the binary
operation t on [0, 1] defined by t(a, b) = c(s(c(a), c(b))) for all a, b in [0, 1] is a t-norm such
that (t,s, c) is a dual triple.
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Theorem 7. Given an involutive fuzzy complement c and an increasing generator g
of c, the t-norm and t-conorm generated by g are dual with respect to c.

Theorem 8. Let (t,s, c) be a dual triple generated by Theorem 7. Then, the fuzzy
operations t, s, c satisfy the law of excluded middle

s(a, c(a)) = 1 (6.32)

and the law of contradiction
t(a, c(a)) = 0. (6.33)

Theorem. Let (i,u,c) be a dual triple that satisfies the law of excluded middle and the
law of contradiction. Then (i,u,c) does not satisfy the distributive laws. This means
that t(a,s(b, d)) is not equal to s(t(a, b), t(a, d)) for all a, b, d in [0, 1].

For detailed proofs of all these results see Klir and Yuan (1996).
We now can see the point of the rather tedious section on generator functions. If

we would like a dual triple, which makes the algebraic manipulation of fuzzy sets
a little simpler, then we can create such a dual triple from one generating function
g. In application, the complement is the simplest function to analyze. Suppose we
can generate some data that gives us a feel for how people feel subjectively about
membership and non-membership of some object in a fuzzy set. If we can fit a Sugeno
or Yager complement to this data, we can retrieve its generating function g and then
use it to generate corresponding (dual triple) union, s, and intersection, t, operators.
The homework at the end of this chapter describes how such an experiment could be
performed.

6.8. Averaging Operator

The averaging operators are a third class of binary operators used to average its
arguments a and b. Since all intersection operators produce results that are below
the minimum of a and b and all union operators produce results that are greater
than the maximum of a and b, there is a large range of values that are excluded by
these two classes of operators. Into this gap we now introduce averaging operators
h(a, b). These operators do not correspond exactly to any logical connective, the way
intersection operators model and and union operators model or. These averaging
operators take two arguments and produce a result that greater than or equal to
the min(a, b) and less than or equal to max(a, b). An averaging operator is a function
h : [0, 1]× [0, 1]→ [0, 1] such that following axioms hold.

(h1) Idempotency — h(a, a) = a.

(h2) Monotonicity — h(a, b) ≤ h(c, d) whenever a ≤ c and b ≤ d.

(h3) Commutativity — h(a, b) = h(b, a).

(h4) Continuity — h is a continuos function.
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Name Operator Generator

arithmetic mean a+b
2 x

generalized p-mean p

√
ap+bp

2 xp

harmonic mean 2ab
a+b

1
x

geometric mean
√
xy log x

dual of geometric mean 1−
√

(1− x) (1− y) log (1− x)

Table 6.5.: Averaging operators.

The following properties could have been listed as a condition but since they are con-
sequences of the previous axioms it could also be stated as a lemma. This is another
example of keeping an axiomatic skeleton sparse. If we added the following two con-
ditions as axioms student would have to show six things in a homework problem to
show that an operator was an averaging operator. Instead they only have to show
four things, and that is certainly easier.

(g5) Extremes — h(0, 0) = 0 and h(1, 1) = 1.

(g6) Boundary conditons — min(a, b) ≤ h(a, b) ≤ max(a, b).

Averaging operators allow for an interaction between the values of two fuzzy sets. It
allows the resultant averaged value to be better than the worst case but less than the
best case. In fact the average value is often right in the middle, which should come
as no surprise. However there are other averaging operators beside the geometric
mean, such as the harmonic mean. Assume f is any continuous strictly monotone
function (this means that it is always increasing or always decreasing). It is a fact
that all continuous strictly monotone functions have inverses so we know that f−1

exists. Then

h(a, b) = f−1
[
f(a) + f(b)

2

]
is called a quasi-arithmetic means. Such a function h is always an averaging operator
Aczél (1966). Let α ∈ [0, 1] then

h(a, b) = f−1 [αf(a) + (1− α)f(b)]

is a more general form of quasi-arithmetic operator Aczél (1966). Some of the more
important averaging operators are given in Table (6.5).

6.9. Aggregation Operations

The idea of an averaging operator can be extended to m-ary aggregation operators.
Since averaging operations are in general not associative, they must be defined as
functions of m arguments (m ≥ 2). That is, an averaging operation h is a function of
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the form
h : [0, 1]m → [0, 1]. (6.34)

Averaging operations are characterized by the following set of axioms:

(h1) Idempotency — for all a ∈ [0, 1],

h(a, a, a, . . . , a) = a. (6.35)

(h2) Monotonicity — for any pair of m–tuples of real numbers in [0, 1], 〈a1, a2, a3, . . . , am〉
and 〈b1, b2, b3, . . . , bm〉, if ak ≤ bk for all k ∈ Nm then

h(a1, a2, a3, . . . , am) ≤ h(b1, b2, b3, . . . , bm). (6.36)

It is significant that any function h that satisfies these axioms produces numbers
that, for any m–tuple 〈a1, a2, a3, . . . , am〉 ∈ [0, 1]m, lie in the closed interval defined by the
inequalities

min(a1, a2, a3, . . . , am) ≤ h(a1, a2, a3, . . . , am) ≤ max(a1, a2, a3, . . . , am). (6.37)

The min and max operations qualify, due to their idempotency, not only as fuzzy coun-
terparts of classical set intersection and union, respectively, but also as extreme
averaging operations.

An example of a class of symmetric averaging operations are generalized means,
which are defined for all m–tuples 〈a1, a2, a3, . . . , am〉 in [0, 1]m by the formula

hp(a1, a2, a3, . . . , am) =
1

m
(ap1 + ap2 + ap3 + · · ·+ apm)

1
p , (6.38)

where p is a parameter whose range is the set of all real numbers excluding 0. For
p = 0, hp is not defined; however for p→ 0, hp converges to the well known geometric
mean. That is, we take

h0(a1, a2, a3, . . . , am) = (a1a2a3 . . . am)
1
m . (6.39)

For p→ −∞ and p→∞, hp converges to the min and max operations, respectively.

Assume again that f is any continuous strictly monotone function, then

h(a1, a2, .., am) = f−1

[
1

m

m∑
i=1

f(ai)

]

is still called a quasi-arithmetic means . Let 〈w1, w2, ..., wm〉 be weights with wi ∈ [0, 1]
then

h(a1, a2, .., am) = f−1

[
m∑
i=1

wif(ai)

]
is a more general form of quasi-arithmetic operator Aczél (1966).
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6.9.1. OWA operators

Yager introduced ordered weighted averaging(OWA) operators in Yager (1988). They
are by nature averaging operators that treat a fuzzy set in its possibility theory in-
terpretation. Let a = 〈a1, a2, a3, . . . , am〉 be an m-dimensional vector of values and let
w = 〈w1, w2, w3, . . . , wm〉 be an m-dimensional vector of weights, with both ai ∈ [0, 1] and
wi ∈ [0, 1] , for 1 ≤ i ≤ m. Define the vector b = 〈b1, b2, b3, . . . , bm〉 to be the vector a sorted
in decreasing order of magnitude, so that bi ≥ bi+1 then the OWA average of a is

OWAw(a) =
m∑
i=1

wibi.

At first it would seam that OWA operators are very artificial. However. let us
examine three special cases of OWA operators

Let w∗ = 〈1, 0, 0, ..., 0〉 then

OWAw∗(a) = b1 = max [a1, a2, a3, . . . , am] .

Let w∗ = 〈0, 0, 0, ..., 1〉 then

OWAw∗(a) = bm = min [a1, a2, a3, . . . , am] .

Let w∗ =
〈

1
m ,

1
m ,

1
m , ...,

1
m

〉
then

OWAw∗(a) =
1

m

m∑
i=1

bi =
1

m

m∑
i=1

ai .

Thus OWA operators allow us to perform a delicate mix of values emphasizing either
large values in a by making wi big for low values of i and tiny for higher values of i or
vice versa.

6.10. Notes

Most of the important early work on t-norms comes form early, and quite com-
plex, works on probabilistic metric spaces. The term is originalay due to Menger
(1942). Most of the developmental work was done in Schweizer and Sklar (1961)
and Schweizer and Sklar (1963). The book Schweizer and Sklar (1983) provides a
complete development of the subject. Characterization of the union and intersec-
tion operators for fuzzy set theory was presented in Bellman and Giertz (1973). An
excellent overview of aggregation operators is in Dubois and Prade (1985).

6.11. Homework

Let us define the universal sets

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, (6.40)
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Y = {a, b, c}, (6.41)

and
Z = {α, β, γ, δ} . (6.42)

Given the fuzzy sets

A(x) =
x

10

B(x) =
|x− 5|

5

C(x) =

{
9−|2x−9|

8 1 ≤ x ≤ 8

0 otherwise

D(x) = 0.8

E(x) = {〈1, 0.2〉 , 〈2, 0.6〉 , 〈3, 0.4〉}
F (y) = {〈a, 0.3〉 , 〈b, 0.7〉 , 〈c, 0.9〉}

and the definition of two different fuzzy relations.

R a b c

1 1.0 0.5 0.1
2 0.4 1.0 0.2
3 0.6 0.5 1.0

S α β δ

a 0.9 0.5 0.1
b 0.4 0.7 0.2
c 0.6 0.5 0.9

(6.43)

try to answer the following questions.

1. What is the Sugeno complement of A if λ = −1?

2. What is the Sugeno complement of A if λ = 2?

3. What is the Sugeno complement of A if λ = 10?

4. What is the Yager complement of A if ω = 0.5?

5. What is the Yager complement of A if ω = 2?

6. What is the threshhold complement of A if t = 0.0?

7. What is the threshhold complement of A if t = 0.5?

8. What is the threshhold complement of A if t = 1.0?

9. What is the Sugeno complement of B if λ = −1?

10. What is the Sugeno complement of B if λ = 2?

11. What is the Sugeno complement of B if λ = 10?

12. What is the Yager complement of B if ω = 0.5?

13. What is the Yager complement of B if ω = 2?

93



6. Fuzzy operators

14. What is the threshhold complement of B if t = 0.0?

15. What is the threshhold complement of B if t = 0.5?

16. What is the threshhold complement of B if t = 1.0?

17. What is a t-norm? Explain this in English.

18. What are the extreme t-norms? Explain why they are considered extreme.

19. What is a t-conorm? Explain this in English.

20. What are the extreme t-conorms? Explain why they are considered extreme.

21. What is the A ∩B using the t-norm drastic product.

22. What is the A ∩B using the t-norm bounded difference.

23. What is the A ∩B using the t-norm algebraic product.

24. Contrast the previous three results.

25. What is the A ∩ C using the t-norm drastic product.

26. What is the A ∩ C using the t-norm bounded difference.

27. What is the A ∩ C using the t-norm algebraic product.

28. Contrast the previous three results.

29. What is the B ∩ C using the t-norm drastic product.

30. What is the B ∩ C using the t-norm bounded difference.

31. What is the B ∩ C using the t-norm algebraic product.

32. Contrast the previous three results.

33. What is the A ∪B using the t-conorm drastic sum.

34. What is the A ∪B using the t-conorm bounded sum.

35. What is the A ∪B using the t-conorm algebraic sum.

36. Contrast the previous three results.

37. What is the A ∪ C using the t-conorm drastic sum.

38. What is the A ∪ C using the t-conorm bounded sum.

39. What is the A ∪ C using the t-conorm algebraic sum.

40. Contrast the previous three results.

41. What is the B ∪ C using the t-conorm drastic sum.

42. What is the B ∪ C using the t-conorm bounded sum.
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43. What is the B ∪ C using the t-conorm algebraic sum.

44. Contrast the previous three results.

45. Is g(x) = x2 a generating function? If so what complement, t-norm and t-conorm
are generated by g(x)?

46. Is g(x) = log2 (1 + x) a generating function? If so what complement, t-norm and
t-conorm are generated by g(x)?

47. Is g(x) = ex − 1 a generating function? If so what complement, t-norm and t-
conorm are generated by g(x)?
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7. Fuzzy Numbers

The real building block of applied fuzzy set theory is the fuzzy number.
Fig. (7.1) shows the evolution from the simple natural number, 135, with a rep-

resentational graph A(x) that is one at x = 135 and zero elsewhere, to an inter-
val containing 135 with representational graph B(x) which is one on the interval
133 ≤ x ≤ 137, to a fuzzy number about 135 with representational graph C(x) which rises
in a straight line from the point 〈131, 0〉 to the point 〈135, 1〉 and then drops back down
to the point 〈139, 0〉, and finally the fuzzy interval near 135 with representational graph
D(x) that rises in a straight line from the point 〈131, 0〉 to the point 〈133, 1〉 stays level at
the height of 1.0 to the point 〈137, 1〉 and then drops down to the point 〈139, 0〉. Recently
the distinction between a fuzzy number and a fuzzy interval has been dropped and
both have been referred to as fuzzy numbers, but the terminology fuzzy interval still
occurs intermittently in the literature.

Figure 7.1.: From the real numbers to the fuzzy intervals: (a) real number, (b) crisp
interval, (c) fuzzy number, and (d) fuzzy interval.

7.1. Fuzzy Numbers

A fuzzy number, T, is a bounded, convex, and normal fuzzy set defined upon the reals.
Before we explore the technical details let us start with a simple example. Eq. (7.1)

and (7.2) define two fuzzy numbers A and B. The fuzzy number A represents the
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vague concept about one and B represents the vague concept about two. A fuzzy set is
determined by its membership function so that the equation for fuzzy set A is

A(x) =

{
x 0 ≤ x ≤ 1

2− x 1 < x ≤ 2
(7.1)

and the equation for fuzzy set A is

B(x) =

{
x− 1 1 ≤ x ≤ 2
3− x 2 < x ≤ 3

(7.2)

If we examine a graph of A and A (Figs. (7.2))we see that the fuzzy numbers are
represented by triangularly shaped functions made up of two line segments. Note
also, that we suppressed mentioning the additional restriction that A(x) = 0 if x is
outside the closed interval [0, 2] and that B(x) = 0 if x is outside the closed interval
[1, 3]. From this moment on, we shall assume that every fuzzy number has zero as
its membership grade for every domain value of x in the universe X not explicitly
listed as having a nonzero membership grade. The fuzzy number A expresses the
notion that about one includes any domain value greater than zero and less than two,
but also indicates that we are more confident that 1.1 is about one (0.9 confident)
than we are that .2 is about one (0.2 confident) and that 2.1 is not about one at all (0.0
confidence). This is somewhat related to notions like accuracy and precision but on a
sliding scale. For instance a ruler that is marked in centimeters must be read to the
nearest centimeter. A measurement of 34 centimeters says that the exact value is in
the interval [33.5,34.5), however all values in this range are equally 34 centimeters.

Figure 7.2.: The fuzzy numbers A(x), about one and B(x), about two.

Fuzzy numbers are one of the focal concepts of this book. How we design, manipu-
late, measure, utilize and compare fuzzy numbers are the subjects that concern most
the remaining chapters on fuzzy set theory.

For a start on using fuzzy numbers, consider the problem of adding two fuzzy num-
bers, say A and B. The result should be another fuzzy number and if the fuzzy num-
bers A and B properly represent the concepts about one and about two then their sum
should represent about three. In this example of the addition of two fuzzy numbers A
and B we are already being exposed to the true power of fuzzy numbers. Nothing
before fuzzy set theory was designed to handle the everyday quantities of human ex-
istence like around a dozen. When the recipe calls for two large onions and all we have
is a bag of small onions we are not daunted. If we are hungry we use three, maybe
four small onions as an approximation. (Or we go get takeout.). Chapters (16) and (9)
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Figure 7.3.: The fuzzy triangular number A = Tr[0, 1, 2].

will focus on how we get and use about one, very old, and other vague concepts. Right
now, we will present some of the technical details of fuzzy numbers before resuming
our discussion on how to add two fuzzy numbers.

Here is the technical definition of a fuzzy number.

Definition 20 (fuzzy number). A fuzzy number is a fuzzy set with domain R, the real
numbers, that is

1. normal, some element has membership grade one,

2. bounded, the support of the fuzzy set is a bounded interval, and

3. convex, essentially, every α–cut is a closed interval for positive α.

For the mathematically inclined, a fuzzy set T is termed normal if there exists an
x ∈ X such that T(x) = 1. A fuzzy set T is convex if every α–cut Tα, for α ∈ (0, 1], is
a convex subset of the domain, i.e., a continuous interval. An equivalent definition
of convexity requires that for any λ, 0 ≤ λ ≤ 1, that min[T(x),T(y)) ≤ T(λx + (1 − λ)y].
Finally the support, or strong α–cut at zero must be bounded, that is T0+ = [a, b] with
a ≤ b and neither a nor b is permitted to be infinite.

Remark 4. Many earlier works had fuzzy numbers being unimodal. That meant that
the x such that T(x) = 1 had to be unique. These works distinguished between fuzzy
numbers (unimodal) and fuzzy intervals where T(x) = 1 over an interval [l, r]. However,
the similarities between the two entities were so great that the distinction was soon
abandoned.
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7.1.0.1. Triangular fuzzy number

A triangular fuzzy number, Tr, is named for its shape. Its membership function is
given by two line segments, one rising from the point 〈a, 0〉 to 〈m, 1〉 and the second
falling from 〈m, 1〉 to 〈b, 0〉. Its domain is the closed interval [a, b]. A triangular fuzzy
number can be specified by the ordered triple 〈a,m, b〉 with a ≤ m ≤ b and its member-
ship function is:

Tr [a,m, b] (x) =

{ x−a
m−a a ≤ x ≤ m
x−b
m−b m < x ≤ b

Remark 5. When an ordered pair 〈x, y〉 is used as an argument to a function of two
variables, it is almost always written as f(x, y) and not as f(〈x, y〉). The extra brackets
only make the expression more difficult to interpret. Similarly, parameters are usu-
ally enclosed in square brackets, [p], and Tr [〈a,m, b〉] is abbreviated to Tr [a,m, b] . How-
ever the parameters of the triangular fuzzy number, and the other fuzzy numbers to
come, are in order, and the square brackets do not represent a closed interval.

7.1.0.2. Trapezoidal fuzzy number

A trapezoidal fuzzy number, Tp, can be specified by an ordered quadruple 〈a, l, r, b〉
with a ≤ l ≤ r ≤ b and a membership function consisting of three line segments. The
first segment rises from 〈a, 0〉 to 〈l, 1〉, the second segment is a horizontal line that has
a constant value of one and that stretches from 〈l, 1〉 to 〈r, 1〉, and the third segment
drops from 〈r, 1〉 to 〈b, 0〉. The membership functions for a trapezoidal fuzzy numbers
is:

Tp [a, l, r, b] (x) =


x−a
l−a a ≤ x ≤ l
1 l < x < r
x−b
r−b r ≤ x ≤ b

Other standard fuzzy number are the differentiable piecewise quadratic and Gaus-
sian bell shaped numbers.

7.1.0.3. Differentiable piecewise quadratic

A differentiable piecewise quadratic numbers Tq consist of four quadratic pieces and
are parameterized by five values a, l, m, r, and b. The values a and b are the left
and right hand limits of the support, m is the mean value (core) where Tq assumes
the value one, and l and r are the left and right hand crossover points (points of
inflection). If Tq 〈a, l,m, r, b〉 is a continuous piecewise quadratic number then the
membership function of Tq is given by:

Tq [a, l,m, r, b] (x) =



1
2

(
a−x
a−l

)2
a ≤ x ≤ l

1− 1
2

(
m−x
m−l

)2
l < x ≤ m

1− 1
2

(
m−x
m−r

)2
m < x ≤ r

1
2

(
b−x
b−r

)2
r < x ≤ b
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Figure 7.4.: The fuzzy tapezoidal number F = Tp[1, 2, 3, 4].

7.1.0.4. Gaussian numbers

Gaussian numbers are parameterized by m the mean, s the spread and γ the scale
parameter that adjusts the height. The membership function of a bell shaped fuzzy
number is:

Tb [m, s, γ] (x) = γ e−(x−m)2/s2

7.1.0.5. L−R fuzzy number

An L − R fuzzy number Dubois and Prade (( 1980a, )) is a unimodal fuzzy number
on the reals that can be described in terms of two reference function, the left hand
reference function, LF , and the right hand function, RF . A unimodal fuzzy set has its
maximum value at a unique value m of the domain X. This insures that if T (x) = 1 then
x = m. A reference function LF or RF is a function that is monotone non- decreasing
on the interval (−∞, 0) and monotone non-increasing on the interval (0,∞) and such
that LF (0) = RF (0) = 1. With these conventions an L−R fuzzy number can be described
in terms of an ordered triple

Tlr =
〈
〈m,u, v〉 ,L F,R F

〉
where LF and RF are the reference functions, m is the mean of the fuzzy number and
u and v are the left and right–hand spread of the function. The formal definition of
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Figure 7.5.: The piecewise quadratic fuzzy number H = Tq [1, 2, 3, 4, 5].

the L−R fuzzy number is

Tlr(x) =

{
RF (x−mv ) x ≥ m
LF (m−xu ) x < m

Almost all fuzzy numbers can be expressed as L− R fuzzy numbers with an appro-
priate choices for the left and right reference function LF and RF as well as for the
parameters; the mode m, left spread u. and right spread v.

7.1.0.6. Impulse fuzzy number

Finally we mention the impulse fuzzy numbers also called a fuzzy point number. The
impulse number Ti [m] has membership function

Ti [m] (x) =

{
1 x = m
0 otherwise

. (7.3)

An impulse number can be considered a degenerate case of a triangular (and other
types) of fuzzy number since Ti [m] = Tr 〈m,m,m〉. This is also called a fuzzy singleton
in the literature of fuzzy set theory.

7.2. S–shaped fuzzy sets

The bounded support requirement for a fuzzy number means that what goes up must
come down. While this is an important requirement for fuzzy numbers, many mono-
tone functions that asymptotically approach one are treated as if they are fuzzy num-
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Figure 7.6.: The fuzzy bell number G = Tb [3, 1, 1].

Figure 7.7.: The fuzzy singleton Ti [1].
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bers, though, technically, they are not. An asymptotic function gets very close to a
limiting value (which is usually zero or one in this book) but never quite reaches it,
as shown in Fig. (7.9).

Monotone increasing and monotone decreasing functions as illustrated in Fig. (7.8)
are often called an s–shaped fuzzy number, which is an abuse of the language that
occurs all too often. An increasing s–shaped fuzzy set S may consist of two quadratic
pieces, line segments, exponential curves, or any monotonic function that achieves
or is asymptotic to 1 at one end of its domain set, and achieves or is asymptotic to 0 at
the other end of its domain set. Assume in all the following definitions of this section
that a ≤ l ≤ m ≤ r ≤ b are all real numbers.

Some examples of increasing s–shaped fuzzy sets are the quadratic s-shaped fuzzy
sets Sqi:

Sqi [a, l,m] (x) =


1
2

(
a−x
a−l

)2
a ≤ x ≤ l

1− 1
2

(
m−x
m−l

)2
l < x ≤ m

and the linear s-shaped sets Sli:

Sli [a, l, r, b] (x) =


0 a ≤ x ≤ l
x−l
r−l l < x ≤ r
1 r < x ≤ b

Some examples of decreasing s–shaped fuzzy numbers are the quadratic s-shaped
fuzzy sets Sqd:

Sqd [m, r, b] (x) =

 1− 1
2

(
m−x
m−r

)2
m ≤ x ≤ r

1
2

(
b−x
b−r

)2
r < x ≤ b

and the linear s-shaped sets Sld:

Sld [a, l, r, b] (x) =


1 a ≤ x ≤ l
x−r
l−r l < x ≤ r
0 r < x ≤ b

Figure 7.8.: An increasing and a decreasing s-shaped fuzzy set.
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Figure 7.9.: Sigmoid fuzzy sets.

Other extremely popular increasing s-shaped fuzzy sets are those generated by the
sigmoid functions,

Sσ [β] (x) =
(
1 + e−βx

)−1
.

with β ≥ 0. This curve is illustrated in Fig. (7.9), for various values of β > 0. If β is
less than zero then the s-shaped fuzzy set becomes decreasing.

7.3. Fuzzy Arithmetic

7.3.1. The extension principle

The most important tool in all of fuzzy sets is the extension principle. It is important
because it provides the connection between fuzzy sets and all the functions, opera-
tions, and tools of classical mathematics.

For example suppose we define a fuzzy number A = Tr [0, 1, 2] and another fuzzy
number B = Tr [1, 2, 3].

It is a natural question to ask what is the sum of these two fuzzy numbers? Also
what is their difference, product and quotient? Furthermore, how do we define func-
tions upon fuzzy numbers? Fuzzy numbers would be of little use if there were no
answers for these questions, or if there were not some general method to extend any
function or operation of classical mathematics to the realm of fuzzy numbers. The
extension principle provides this ability and more.

First it is somewhat obvious that the sum of two fuzzy numbers would again be a
fuzzy number. A fuzzy number such as A models the concept about one and B models
about two. If we add about one to about two it would be surprising if we got an exact
value, in fact we would expect the answer to be about three. Another observation we
can make is the following. Since we are unsure as to how oneish A is and how twoish B
is, we are doubly unsure how threeish their sum C would be.

Thus the sum of A and B should be another fuzzy number C and we need a formula
to define the membership grade of x in C based upon the definitions of A and B.
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7. Fuzzy Numbers

Figure 7.10.: The fuzzy numbers A = Tr [0, 1, 2] and B = Tr [1, 2, 3].

The proper definition is
C(z) = max

x+y=z
min[A(x),B(y)]. (7.4)

which gives us the membership function of C = A⊕B. In this example we are assuming
that x, y, and z are all ranging over the real numbers R. We use the notation ⊕ for the
addition of fuzzy numbers because it is important to remember that C = A⊕ B cannot
be gotten by adding the two membership functions of A and B. It is more on the order
of a convolution than a simple addition. The result turns out to be another triangular
fuzzy number,

C(x) =

{
x−1
2 1 ≤ x ≤ 3

5−x
2 3 < x ≤ 5

(7.5)

The formulas (7.4) and (7.5) are produced by the extension principle. However
the extension principle is a very general result that can be applied to many other
situations besides the addition of two fuzzy numbers. It can be applied to any of the
operators of ordinary arithmetic to provide formulas for the sum, difference, product
and quotient of fuzzy numbers. It can be applied to any crisp numerical relation or
function in mathematics to provide an analogous fuzzy numeric relation or function.

Let X be the Cartesian product of n sets, X = X1×X2×X3 · · ·Xn. Let A1, A2, A3,· · · ,An
be n fuzzy sets defined upon the universes X1, X2, X3 · · · Xn respectively. Suppose
further that f is a mapping from X to some set Y , y = f(x1, x2, x3, ..., xn) = f(x). Lastly,
by f−1(y) we denote that subset of X that is mapped by the function f to y ∈ Y , i.e.,
f−1(y) = {x | f(x) = y}. We can now define a fuzzy set B with domain Y , induced by
the mapping f and the fuzzy sets A1, A2, A3, . . . , An, via the extension principle

B(y) = sup
x∈f−1(y)

min[A1(x1), A2(x2), · · · , An(xn)] (7.6)

for all y ∈ Y . Note that f need not be a function, only a relation.
Thus the definition of the membership function of the sum of B and B, C = A ⊕

B, given above is due to the application of the extension principle upon the fuzzy
numbers A and B and the binary arithmetic function of addition.

With the help of the extension principle we can now define a fuzzy arithmetic of
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Figure 7.11.: The fuzzy set C(x), about three, is the sum of A(x), about one and B(x), about
two.

fuzzy numbers. Recalling the definitions of A and B the extension principle gave us
C = A⊕ B with membership function C = Tr [1, 3, 5]:

C(x) =

{
x−1
2 1 ≤ x ≤ 3

5−x
2 3 < x ≤ 5

. (7.7)

7.3.1.1. Interval arithmetic

How did we get the solution given in Eq. (7.7) for the fuzzy number C(x) that is the
sum of the fuzzy numbers A(x) and B(x)? It can be solved for directly by doing a bit
of algebra, but an easier method is to use the interval interpretation of Kaufmann
and Gupta (1985). Remember that a fuzzy set is completely characterized by its α–
cuts. Since a fuzzy number is a convex fuzzy set defined on some subset of the real
numbers, the alpha cuts are intervals,

Aα = [a, a] = {x | A(x) ≥ α}

where
a = min{x | A(x) ≥ α} (7.8)

and
a = max{x | A(x) ≥ α} (7.9)

Remark 6. The notation [a, a] comes from the branch of mathematics called interval
analysis.

Therefore the set of pairs 〈α,Aα〉, for every α ∈ [0, 1], completely characterize a
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fuzzy number and consist of a level of presumption α and of an interval of confidence
Aα = [a, a].

Since A is a fuzzy number, at each presumption level α the interval of confidence
is simply an interval on the real number line (if the domain is the integers or natural
numbers instead of intervals one gets consecutive sequences but this makes little
difference to the algebra involved.) In interval analysis the sum of two intervals [a, a]
and [b, b] is simply another interval [a+ b, a+ b],

[a, a]⊕ [b, b] = [a+ b, a+ b] .

Similarly the product of two intervals is given by the formula

[a, a]⊗ [b, b] = [a · b, a · b]

the formula for the negative of an interval is

	[a, a] = [−a,−a]

and the formula for the multiplicative inverse of an interval is

[a, a]−1 = [a−1, a−1] if a, a ≥ 0.

This allows for a complete algebra of intervals as the subtraction of intervals is
defined by the formula

[a, a]	 [b, b] = [a, a] + (	[b, b])

and the quotient of two intervals is defined by

[a, a]� [b, b] = [a, a]⊗ ([b, b]−1)

We can now show that if C = A ⊕ B then Cα = Aα ⊕ Bα for all α, where Aα ⊕ Bα is
interval addition. Thus if we need to add two fuzzy numbers we can do it by adding
the corresponding intervals of confidence (α-cuts) at each level of presumption (α-
level).

Remark 7. All of these results are also basic results from interval analysis.

Theorem 9. If C = A⊕ B then Cα = Aα ⊕ Bα for all α ∈ I.

Proof. To prove Cα = Aα ⊕ Bα we shall show that Cα ⊆ Aα ⊕ Bα and Cα ⊇ Aα ⊕ Bα.
To show that Cα ⊆ Aα ⊕ Bα is true is completely straightforward. Aα ⊕ Bα, by the

definition of interval addition, is the interval [a+ b, a+ b], where the endpoints a and a
are defined in Eqs. (7.8) and (7.9).

The values of and b and b are defined similarly. The interval [a + b, a + b] contains
an element z if and only if there is an x in [a, a] and a y in [b, b] such that z = x + y.
But if that is true then Cα contains z since A(x) ≥ α and B(y) ≥ α which means that
min [A(x),B(y)] is greater than or equal to α and hence z is an element of Cα . Therefore
every element of Aα ⊕ Bα is an element of Cα and Cα ⊆ Aα ⊕ Bα .

Now suppose that z ∈ Cα. Then for some x and y such that x + y = z the minimum
of A(x) and B(y) was greater than or equal to α . But for the minimum of A(x) and
B(y) to be greater than alpha both A(x) and B(y) must be greater than alpha. If A(x)
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is greater than α then x is an element of Aα = [a, a] and, similarly, y is an element of
Aα = [b, b]. Consequently z = x+ y must be an element of Aα + Bα or Cα ⊇ Aα ⊕ Bα.

A completely similar proof can show that if C = A⊗ B then for every alpha, α ∈ [0, 1],
that Cα = Aα ⊗ Bα. Again we use ⊗ for fuzzy number multiplication to emphasize that
it is not the product of the membership functions of A and B. The negative of a fuzzy
number B, 	B, gives reverse negative intervals for each α. The reciprocal of a fuzzy
number B, B−1, gives reverse reciprocal intervals for each α.

Let us re-examine the problem introduced earlier in this chapter. We want to add
the fuzzy numbers A and B with membership functions

A(x) =

{
x 0 ≤ x ≤ 1

2− x 1 < x ≤ 2

and.

B(x) =

{
x− 1 1 ≤ x ≤ 2
3− x 2 < x ≤ 3

and produce a formula for their sum, product, difference and quotient.
To get a feel for the results and methods that follow let us first use some hard

numbers. Let us fix alpha, α = 0.3. Then the alpha–cuts of A and B are intervals,
specifically A0.3 = [0.3, 1.7] and B0.3 = [1.3, 2.7].

Addition When we add intervals we add the corresponding endpoints so that

A0.3 ⊕ B0.3 = [0.3, 1.7]⊕ [1.3, 2.7]

= [1.6, 4.4]

which must be the alpha-cut of C = A⊕ A at α = 0.3 or C0.3 = [1.6, 4.4].

Subtraction When we subtract intervals (with all endpoints positive numbers) we re-
verse the second interval and then subtract the corresponding endpoints so that

A0.3 	 B0.3 = [0.3, 1.7]	 [1.3, 2.7]

= [−2.4, 0.4]

which must be the alpha-cut of C = A	 B at α = 0.3 or C0.3 = [−2.4, 0.4].

Multiplication When we multiply intervals we multiply the corresponding endpoints
so that

A0.3 ⊗ B0.3 = [0.39, 1.7]⊗ [1.3, 2.7]

= [0.09, 4.59]

which must be the alpha-cut of C = A⊗ B at α = 0.3 or C0.3 = [0.09, 4.59].

Division When we divide intervals (with all endpoints positive numbers) we reverse
the second interval and then divide the corresponding endpoints so that

A� B0.3 = [0.3, 1.7]� [1.3, 2.7]

= [0.11, 1.31]
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to two decimal places, which must be the alpha-cut of C = A � B at α = 0.3 or
C0.3 = [0.11, 1.31].

Negation When we negate an intervals we reverse the endpoints and then negate
them

	B0.3 = 	 [1.3, 2.7]

= [−2.7,−1.3]

which must be the alpha-cut of C = A	 B at α = 0.3 or C0.3 = [−2.7,−1.3].

Reciprocal When we negate an intervals we reverse the endpoints and then take their
reciprocals (

B0.3
)−1

= [1.3, 2.7]
−1

= [0.37, 0.77]

to two decimal places, which must be the alpha-cut of C = B−1 at α = 0.3 or
C0.3 = [0.37, 0.77].

Now a more general case with the fuzzy numbers A and B. First off, we can notice
that A and B are triangular fuzzy numbers or Trs. This will keep the calculations
simpler in the next set of examples. Now for each α the alpha-cut Aα is an interval,
and because of the triangular nature of the membership function we can solve for
the left-hand and right-hand limits of the alpha-cuts in terms of α. For an arbitrary
α,Aα = [a, a] we know that a and a depend on alpha, that is

Aα = [a(α), a(α)]

Also the left and right hand limits of the alpha-cut of B depend only on the value of α:

Bα = [b(α), b(α)] .

We can solve explicitly for these functions of alpha using Eqs. (7.1) and (7.2). For
instance if we take the right hand side of the fuzzy triangular number B and set it
equal to α we get

α = 3− x

and solving this for the x value produces x = 3 − α which will be the right hand
endpoint of the alpha-cut of B. Similarly, setting α equal to the left hand side and
solving produces x = α + 1 which will be the left endpoint of the alpha-cut interval.
Repeat this for the fuzzy number A and one gets the following formulas for the left
and right endpoints of the intervals of the alpha-cuts of A and B:

a(α) = α,

a(α) = 2− α.
b(α) = α+ 1.

b(α) = 3− α .
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Another way of saying this is that for any α ∈ [0, 1] the alpha-cuts are the intervals:

Aα = [α, 2− α] and

Bα = [α+ 1, 3− α] .

An earlier theorem showed that if C = A ⊕ B then the α-cuts of C were equal to the
sum of the alpha-cuts of A and B. Therefore

Cα = [c(α), c(α)]

= [a(α), a(α)]⊕ [b(α), b(α)]

= [a(α) + b(α), a(α) + b(α)]

and if we replace a(α) with α, a(α) with 2 − α, b(α) with α + 1 and b(α) with 3 − α this
gives

Cα = [α, 2− α]⊕ [α+ 1, 3− α]

= [2α+ 1, 5− 2α]

We now know that the left end of the α-cut interval of C, in terms of α, is

c(α) = 2α+ 1 (7.10)

and the right end of the α-cut interval of C, in terms of α, is

c(α) = 5− 2α. (7.11)

Next, solve Eq. (7.10) for α in terms of c to give the left-hand function, LF , for the
fuzzy number C. Solving c(α) = 2α+ 1 for α gives

α =
c(α)− 1

2
. (7.12)

Then, solve Eq. (7.11) and for α in terms of c to get the right-hand function, RF , for
the L−R fuzzy number C. Solving c(α) = 5− 2α for α gives

α =
5− c(α)

2
. (7.13)

It is important to understand here that α is essentially a membership grade and
c(α) is the leftmost x value at membership grade α and c is the rightmost x value at
membership grade α. If this is understood properly, we realize that Eq. (7.12) is the
equation of the left hand (ascending) side of the fuzzy number C and Eq. (7.13) is
the equation of the right hand (descending) side of the fuzzy number C. Putting it all
together, we get the following formula for the fuzzy number C:

C(x) =

{
x−1
2 1 ≤ x ≤ 3

5−x
2 3 < x ≤ 5

The intervals of definition, for example 1 ≤ x ≤ 3, can be determined by adding the
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corresponding intervals of definition of A, which is 0 ≤ x ≤ 1, and B, which is 1 ≤ x ≤ 2,
or by determining where x−1

2 takes on values in the unit interval, 0 ≤ x−1
2 < 1. Both

methods give the same result. This number is pictured in Fig. (7.11).As a second
example let us find the formulas for the alpha-cuts of the fuzzy number C that is the
difference of A and B. With C = A	 B

Cα = [c(α), c(α)]

= [a(α), a(α)]	 [b(α), b(α)]

= [a(α)− b(α), a(α)− b(α)]

= [α, 2− α]	 [α+ 1, 3− α]

= [α− (3− α) , (2− α)− (α+ 1)]

= [2α− 3, 1− 2α]

We now know that for subtraction

c(α) = 2α− 3 (7.14)

and
c(α) = 1− 2α. (7.15)

Solving these equations for c

α =
c(α) + 3

2
. (7.16)

and c

α =
1− c(α)

2
. (7.17)

respectively, gives us the shape of the fuzzy number C = A	 B :

C(x) =

{
x+3
2 −3 ≤ x ≤ −1

1−x
2 −1 < x ≤ 1

The fuzzy number C is a triangular fuzzy number, C = Tr[−3,−1, 1].

The following examples show that the product and quotient of triangular fuzzy num-
bers are not triangular fuzzy numbers.For the next example let us find the formulas
for the alpha-cuts of the fuzzy number C that is the product of A and B. With C = A⊗B
we deduce

Cα = [c(α), c(α)]

= Aα ⊗ Bα

= [a(α), a(α)]⊗ [b(α), b(α)]

= [a(α) · b(α), a(α) · b(α)]

= [α · (α+ 1) , (3− α) · (2− α)]

= [α2 + α, 6− 5α+ α2]
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Figure 7.12.: The fuzzy number C = A−B.

So the left end of the α-cut interval, in terms of α, is

c(α) = α2 + α

and the right end of the α-cut interval, in terms of α, is

c(α) = 6− 5α+ α2.

We can now solve these two equations for α in terms of c to give the left-hand
function, LF , for the fuzzy number C and for α in terms of c to get the right-hand
function, RF , for the L−R fuzzy number C using the quadratic equation

α =
−b±

√
b2 − 4ac

2a

and keeping only the positive roots for the appropriate intervals. The final result is

C(x) =

{ √
4x+1−1

2 0 ≤ x ≤ 2
5−
√
4x+1
2 2 < x ≤ 6

.

The last example finds the formulas for the alpha-cuts of the fuzzy number C that is
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Figure 7.13.: Fuzzy arithmetic: the product and quotient of A and B, A⊗B and A�B.

the quotient of A and B if B has positive values for all its alpha–cuts. With C = A� B

Cα = [c(α), c(α)]

= Aα � Aα

= [a(α), a(α)]� [b(α), b(α)]

=

[
a(α)

b(α)
,
a(α)

b(α)

]
= [α, 2− α]� [α+ 1, 3− α]

=

[
α

3− α
,

2− α
α+ 1

]
So

c(α) =
α

3− α
and

c(α) =
2− α
α+ 1

.

We can now solve these for α in terms of c to give the left-hand function, LF , for
the fuzzy number C and for α in terms of c to get the right-hand function, RF , for the
L−R fuzzy number C. A little algebra gives

C(x) =

{ 3x
1+x 0 ≤ x ≤ 1

2
2−x
x+1

1
2 < x ≤ 2

.

There is one problem that should be mentioned in connection with reliance on inter-
val based methods in computing functions of fuzzy numbers, this is the cancellation
problem. Consider the functions f(x) = x−x and g(x) = x÷x. If we use A(x), almost one,
and blindly do interval arithmetic we get that C = f(A) = Tr 〈0, 2, 4〉 however if we use
the extension principle we get an impulse number C′ = Tr 〈0, 0, 0〉 since x− x is always
zero! See Klir (1997) for a complete analysis of the difference between interval and
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extension methods.

7.4. Fuzzy functions

A normal function, such as f(x) = x2 maps numbers to numbers. The function f(x) = x2

would map the number x = 3 to f(3) = 9. A fuzzy function should map a fuzzy number
to a fuzzy number.

Fuzzy numbers Let X 6= ∅ and Y 6= ∅ be universal crisp sets and let f be a function
from F(X) to F(Y ). Then f is called a fuzzy function (or mapping) and we use
the notation f : F(X)→ F(Y ).

It should be noted, however, that a fuzzy function is not necessarily defined by
Zadeh’s extension principle. It can be any function which maps a fuzzy set A ∈ F(X)
into a fuzzy set B ≡ f(A) ∈ F(Y ).

Definition 21. Let X 6= ∅ and Y 6= ∅ be crisp sets. A fuzzy mapping f : F(X) → F(Y )
is said to be monotone increasing if for every A,A′ ∈ F(X) and A ⊂ A′ it follows that
f(A) ⊂ f(A′).

Theorem 10. Let X 6= ∅ and Y 6= ∅ be crisp sets. Then every fuzzy mapping f : F(X)→
F(Y ) defined by the extension principle is monotone increasing.

Proof. Let A,A′ ∈ F(X) be such that A ⊂ A′ . Then using the definition of extension
principle we get

f(A)(y) = sup
x∈f−1(y)

A(x) ≤ sup
x∈f−1(y)

A′(x) = f(A′)(y)

for all y ∈ Y .

Lemma 1. Let A,B ∈ F be fuzzy numbers and let f(A,B) = A + B be defined by the
extension principle. Then f is monotone increasing.

Proof. Let A,A′,B,B′ ∈ F such that A ⊂ A′ and B ⊂ B′. Then using the definition of
extension principle we get

(A + B)(z) = sup
x+y=z

min [A(x),B(y)] ≤ sup x+y=z min [A′(x),B′(y)]} = (A′ + B′)(z)

Lemma 2. Let A,B ∈ F be fuzzy numbers, let λ1, λ2 be real numbers and let f(A,B) =
λ1A+λ2B be defined by the extension principle. Then f is a monotone increasing fuzzy
function.

The above results can be generalized to linear combinations of fuzzy numbers.
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Figure 7.14.: Distance between fuzzy numbers A and B using the distance D.

7.5. Metrics for fuzzy numbers

When we are given two numbers, like a = 12 and b = 7, it is quite easy to say how far
apart they are, or, technically, the distance between a and b. They are 5 units apart
and the formula for the distance is the absolute value of the difference:

dist(a, b) = |a− b| .

For fuzzy numbers a more complex definition is needed, in fact more than one type
of distance has been proposed. The ones that are applied the most often are the
Hausdorf, C∞, Hamming, and Discrete Hamming distances. See 2.6 on page 18.

In all of the following definitions A and B are fuzzy numbers, the α–cuts of A and B
are Aα = [a(α), a(α)] and Bα =

[
b(α), b(α)

]
and the membership functions are A(x) and

B(x).

Hausdorf distance The Hausdorf distance DistD(A,B) is the maximal distance between
α level sets of A and B

C∞ distance The C∞ distance C∞(A,B) is the maximal distance between the member-
ship grades of A and B

DistC∞(A,B) = ‖A− B‖∞ = sup
x∈X
|A(x)− B(x)| .

Hamming distance The Hamming distance H(A,B) is the integral of the distance be-
tween the membership grades of A and B

DistH(A,B) =

ˆ
X

|A(x)− B(x)| dx.

Discrete Hamming distance The Discrete Hamming distance H(A,B) is the sum of the
distance between the membership grades of A and B for each of the n elements
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Figure 7.15.: Distance between fuzzy numbers A and B using distance C.

of the discrete universe X = {x1, x2, ..., xn}

DistH(A,B) =

n∑
i=1

|A(xi)− B(xi)| .

7.6. Fuzzy Algebra

Now this book focuses on application and not theory, and the following short section
can be omitted without consequence. In fact, if the reader does not have a back-
ground that includes limits and convexity the following proof would be difficult to
follow. It is included to show the necessity of the rather complex definition of fuzzy
number, specifically the convexity and continuity conditions.

Theorem 11. The sum of two fuzzy numbers is a fuzzy number.

Proof. Let m and n be arbitrary fuzzy numbers. Thus they are both normal, convex
and upper semi-continuous functions with domain the real numbers. Equation (7.6)
involves only the min and sup function. The min of two values in the unit interval
is also in the unit interval. The sup of a sequence of values in the unit interval is
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in the unit interval. Thus m ⊕ n is a fuzzy set defined upon the real numbers. Since
there exists x, y ∈ R such that m(x) = n(y) = 1 (they are normal) then we can conclude
that m⊕ n (x + y) = 1 since the min of m(x) and n(y) is one and this value must be the
supremum (there can be no larger membership values).

Let the α–cuts of m and n be [m,m] and [n, n]. The α–cut of m+ n is [m+ n,m+ n] and
since m ≤ m and n ≤ n we have that m + n ≤ m + n and thus the α–cut of m + n is a
closed interval for arbitrary α. Thus m+n is convex since all of its α–cuts are convex.

A function is upper semi-continuos if limx→a+ f(x) = f(a). Since the sum of limits is
the limit of the sum limx→a+ [m+ n] (x) = limx→a+ m(x) + limx→a+ n(x) = m(a) + n(a).

The addition and multiplication of fuzzy numbers is commutative and associative:

a⊕ b = b⊕ a (7.18)

(a⊕ b)⊕ c = a⊕ (b⊕ c) (7.19)

and

a⊗ b = b⊗ a (7.20)

(a⊗ b)⊗ c = a⊗ (b⊗ c) (7.21)

7.7. Notes

Interval arithmetic is thoroughly covered in Moore (1963), Moore (1979), and Moore
(1988). Fuzzy numbers and fuzzy arithmetic are best covered in Kaufmann and Gupta
(1985) and Dubois and Prade (1987).

7.8. Homework

Let

A(x) =

{
x x ∈ [0, 1]
2− x x ∈ (1, 2]

B(x) =

{
x− 1 x ∈ [1, 2]
3− x x ∈ (2, 3]

C(x) =

{
x−2
2 x ∈ [2, 4]

6−x
2 x ∈ (4, 6]

and

D(x) =


x
3 x ∈ [0, 3]
1 x ∈ (3, 4]
5− x x ∈ (4, 5]

(7.22)

1. Graph A, B, C, and D.

2. Express A—D as fuzzy triangular or trapezoidal numbers, as appropriate.

3. What is A⊕B.
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7.8. Homework

4. What is B ⊕A.

5. What is A⊕ C.

6. What is B ⊕ C.

7. What is B 	A.

8. What is A	B.

9. What is A⊗B.

10. What is B �A.

11. What is A�B.

12. What is C−1.

13. What is A⊗ (B ⊕ C).

14. What is (A⊗B)⊕ (A⊗ C).

15. Given the above two results, do you think that multiplication distributes over
addition?

16. Is A ∩B a fuzzy number? Why?

17. Is A ∪B a fuzzy number? Why?

18. Is (A⊕B) ∪D a fuzzy number? Why?

19. Express A⊕B, B	A, A⊗B, and B�A as fuzzy triangular or trapezoidal numbers,
if this is possible.

20. Show that Tr 〈a, b, c〉 ⊕ Tr 〈d, e, f〉 is Tr 〈a+ d, b+ e, c+ f〉.

21. Show that Tr 〈a, b, c〉 	 Tr 〈d, e, f〉 is Tr 〈a− f, b− e, c− d〉 if a—f are all nonnegative.

22. Derive a formula for Tr 〈a, b, c〉 ⊗ Tr 〈d, e, f〉 if a—f are all nonnegative.

23. Derive a formula for Tr 〈a, b, c〉 � Tr 〈d, e, f〉 if a—f are all nonnegative.

24. How would one represent a fuzzy number in C or C++ code.
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8. Relations

8.1. Introduction

Relations are an important concept in mathematics and in the real world. A family is
a group of people who have some relation with each other. Consider the set of people
{Eve,Fred,Mary,Sally,Tom,Bob} and the relation father of. Bob is the father of Sally.
Tom is the father of Mary. Next consider the relation parent of. Bob is the parent
of Sally. Sally is the parent of Mary. From all this information we might be able to
conclude that Bob is the grandfather of Mary and that Tom is the husband of Sally.

There are many other types of relations in this world, relations between employers
and employees, and relations between friends.

Friendship is certainly a very different kind of relationship than parenthood. It is
basically true that adult P is the parent of child C or they are not. Friendship, on
the other hand is not so cut and dried. There are friends who you can count on and
there are friends you just met. There are friends on the way in and friends who are
definitely on the way out.

While crisp relationships are perfect for encompassing ideas like parent of, fuzzy
sets are much better at capturing relationships of degree, like friendship.

In crisp mathematics, equality is an important relationship and things are either
equal or they are not. In fuzzy set theory, similarity is an important relationship,
and things are similar to a degree. Similarity is a very context dependant concept,
a house-cat and a tiger are similar in shape but not in size. A house-cat and toaster
are similar in size but not in shape. Similarity is a very fuzzy concept.

8.2. Classical relations

A classical binary relation can be considered as a set of ordered pairs derved from
a product space X × Y . For example, if X = {a, b, c} and Y = {1, 2, 3} then a relation
between X and Y is made explicit by indicating what elements of X have a specific
relation, say R, with elements of Y . As noted in Sec. (2.4) there are many ways to
present a relation. We can list the ordered pairs that are in the relation using set
notation;

R = {〈a, 1〉 , 〈a, 3〉 , 〈b, 2〉 , 〈c, 2〉 , 〈c, 3〉} (8.1)

or use an in-line notation;

aR 1, aR 3, bR 2, cR 2, cR 3 (8.2)
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8. Relations

R 1 2 3

a 1 0 1
b 0 1 0
c 0 1 1

Table 8.1.: A binary relation R presented as a table.

Figure 8.1.: Married.

We can also use a characteristic function to denote a relation, since a relation is just
a set (of ordered pairs);

χR(x, y) =

{
1 〈x, y〉 ∈ R
0 otherwise

(8.3)

8.2.1. Types of classical relations

Definition 22 (Binary Relation). A binary relation between the sets X and Y is a
subset of X × Y . If R is a subset of X × Y and if 〈x, y〉 ∈ R then we say that x is related
to y. If the sets X and Y are the same set, X = Y , then a subset R of X ×X is called a
relation on X.

By far the simplest way to present a binary relation R is in a table. In Table (8.1) a
1 in row a column 3 indicates that a is related to 3, or aR 3, and the 0 in row b column
1 indicates that b is not related to 1, or b 6 R 1.

Example 46. Let X be the domain of men {Tom, Dick, Harry} and Y the domain
of women {Eve,Maria, Sally} then the relation “married to” on X × Y is, for example
〈Tom, Sally〉, 〈Dick,Maria〉, 〈Harry,Eve〉. See Fig. (8.1).

Binary relations are by far the most common relations one is likely to encounter.
However there are some places, such as the creation of relational databases, that
one encounters n-ary relations. In this case the relation is a subset of the product
of n non-empty domain sets, R ∈ X1 × X2 × · · · × Xn. In this case the above notation
(except for the in-line notation) can be generalized to higher dimensions.
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8.2. Classical relations

Definition 23 (classical n-ary relation). Let X1, . . . , Xn be crisp sets. The subsets of
the Cartesian product ×ni=1Xi = X1×· · ·×Xn are called n−ary relations. If X1 = · · · = Xn

and R ⊆ Xn then R is called an n−ary relation on X .

Example 47. Let S be the set of social security numbers, F be the set of first names,
L be the set of last names, and G be the set of real numers between zero and five. A
registrar’s database would contain elements of S ×F ×L×G which allows the lookup
of a students grade point average, or GPA. A typical element might be

〈123− 45− 6789,Adam,Ant, 2.3〉 (8.4)

There are many different types of relations in mathematics. Three of the most
important are identity, equivalence and order. The familiar equal sign, =, of mathe-
matics is the most common identity relation. Identity is a special case of equivalence.
An example of an equivalence relation on the natural numbers is; a is equivalent to b,
written a ≈ b, if and only if both a and b are even or both a and b are odd. Thus 2 ≈ 4
and 1 ≈ 3 but 2 6≈ 3. The relation less than, written <, is an order relation, as is the
subset relation, ⊂.

Every function f : X → Y can be considered as a relation. We can view f as the
set of ordered pairs f = 〈x, f(x)〉. But a set of ordered pairs is precisely the technical
definition of a relation.

Let R be a binary relation on a classical set X . For all of the following definitions,
we assume that x, y, z ∈ X.

Definition (reflexive). R is reflexive if R(x, x), ∀x ∈ X.

Definition 24 (antireflexive). R is antireflexive if not R(x, x), ∀x ∈ X.

Definition 25 (symmetric). R is symmetric when R(x, y) if and only if R(y, x).

Definition 26 (antisymmetric). R is antisymmetric if R(x, y) and R(y, x) imply that
x = y.

Definition 27 (transitive). R is transitive if R(x, y) and R(y, z) imply that R(x, z).

Example. Consider the classical identity, inequality and order relations on the real
line. It is clear that equality, =, is reflexive, symmetric and transitive. Inequality,
6=, is antireflexive and symmetric. Less than, <, an order relation, is anti-reflexive,
anti-symmetric and transitive.

Some of the more important classes of binary relations are:

Definition 28 (equivalence). R is an equivalence relation if, R is reflexive, symmetric
and transitive.

Often an equivalence relation is denoted by the symbol ≡ which is used in-line,
x ≡ y.

Definition 29 (quasi-equivalence). R is a quasi-equivalence relation if, R is symmet-
ric and transitive.

Definition 30 (compatibility). R is a compatibility relation if, R is reflexive and sym-
metric. This type of relation is also called a tolerance relation.
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8. Relations

Reflexive Antireflexive Symmetric Antisymmetric Transitive

Equivalence ! ! !

Quasi-equivalence ! !

Compatibility ! !

Partial order ! ! !

Preordering ! !

Strict order ! ! !

Table 8.2.: Types of relations.

Definition 31 (partial order). R is a partial order relation if it is reflexive, anti-
symmetric, and transitive.

Often a partial order is denoted by the symbol ≺ which is used in-line, x ≺ y.

Definition 32 (preordering). R is a preorder relation if it is reflexive and transitive.

Definition 33 (total order). R is a total order relation if it is partial order and ∀x, y ∈
X, either R(x, y) or R(y, x) holds.

The following table summarizes the above definitions.

Example 48. Consider the relation a “the absolute difference of two numbers is
divisible by three” or mod 3 as it is termed in mathematics and computer science.
This is a relation on the natural numbers N. Thus n ≡ m mod 3 if the difference, m−n,
is exactly multiple of 3. Equivalently n ≡ m mod 3 if the remainder upon division by
three of m is the same as the remainder upon division by three of n. The mod 3 relation
is an equivalence relation.

Example 49. For any positive integer m the relation “the difference of a and b is
divisible by m” is an equivalence relation upon any subset of the integers.

Example 50. Subset of is a partial order. It is not a total order because if A = {1, 2}
and B = {2, 3} then neither A nor B is a subset of the other.

Example 51. Two elements of N5 are compatible, represented with ∼, if they are
within a unit of each other. Thus 2 ≈ 3, and 3 ≈ 4 since |2− 3| ≤ 1 and |3− 4| ≤ 1. But
2 6≈ 4 so the comapatible relation is not transitive.

Example 52. Let X = N5 ∪ {a} and let the relation ∼ be numerical equality. Then
2 ∼ 2, 3 ∼ 3, etc., but ∼ is only a quasi-order as nothing in X is related to a.

Example 53. Let X be the set of all people and let the relation ∼ be identity or is
descended from. This relation is reflexive since identity is reflexive and I am I. The
relation is transitive since my descendant’s descendant is also my descendant. But it
is not symmetric as I am not descended from my children.
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8.3. Fuzzy relations

An important mathematical point is that every equivalence relation upon a set X
partitions that set into pieces called equivalence classes. The mod 3 equivalence rela-
tion divides the natural number into three pieces [1] = {1, 4, 7, 10, . . .} , [2] = {2, 5, 8, 11, . . .} ,
[3] = {3, 6, 9, 12, . . .}. This is a partition since none of the three pieces; [1], [2], [3] contain
any elements in common and their union is the domain set N.

8.3. Fuzzy relations

If we examine the characteristic function view of a relation, Eq. (8.3) or for that
matter the table version of Table (8.1) we see a prime example of a concept (the
relation) that in traditional mathematics maps to a range set {0, 1}. We can easily
fuzzify the concept of a relation by substituting the unit interval [0, 1] as the range set
of the membership function (which used to be called a characteristic function) of a
relation R.

Definition 34 (fuzzy relation). Let X and Y be nonempty sets. A fuzzy relation R is
a fuzzy subset of X × Y . In other words, R ∈ F (X × Y ). If X = Y then we say that R
is a binary fuzzy relation on X .

Let R be a binary fuzzy relation on X . Then R(x, y) is interpreted as the degree of
membership of the ordered pair (x, y) in R .

Example 54. A simple example of a binary fuzzy relation on X = {1, 2, 3}, called
“approximately equal” can be defined as

R(1, 1) = R(2, 2) = R(3, 3) = 1, (8.5)

R(1, 2) = R(2, 1) = R(2, 3) = R(3, 2) = 0.7, (8.6)

R(1, 3) = R(3, 1) = 0.4 . (8.7)

In other words, R (x, y) = 1 if x = y, 0.7 if |x− y| = 1, 0.4 if |x− y| = 2. In matrix notation
the relation R can be represented as

R 1 2 3

1 1.0 0.7 0.4
2 0.7 1.0 0.7
3 0.4 0.7 1.0

or, even more abstractly, as  1 0.7 0.4
0.7 1 0.7
0.4 0.7 1


where in the second matrix the X corresponds to rows and Y corresponds to columns.

8.3.1. Composition

If x is somewhat related to y and y also has some degree of relation to z then it makes
sense that there is implicitly some degree of relationship between x and z.

125



8. Relations

Figure 8.2.: A graph of the relations R and S.

Let R be a fuzzy relationship between X and Y and let S be a fuzzy relationship
between Y and Z. Fuzzy set theory uses the principle that a chain is as strong as
its weakest individual link and that a rope of chains is as strong as the strongest
individual chain. This principle says that the degree of relationship between x and z
through a single intermediate value y is the min of the membership grades of 〈x, y〉 ∈ R
and 〈y, z〉 ∈ S (this is the weakest link). But since there may be many elements of Y
through which x and z could be connected by chains the strength of the resultant link
is the max of all the chains.

R ◦ S (x, z) = max
y∈Y

min[R(x, y), S(y, z)].

Let X = {a, b}, Y = {1, 2, 3}, Z = {α, β}, and let R : X × Y → [0, 1] and S : Y × Z → [0, 1]
be given by the following tables

R 1 2 3

a 0.8 0.1 0.3
b 1.0 0.7 0.5

S α β

1 0.2 0.3
2 1.0 1.0
3 0.5 0.1

(8.8)

This situation is illustrated in Fig. (8.2).

There is a technical detail that must be mentioned here about the real numbers.
Some groups of real numbers do not contain a maximum. The set of negative real
numbers does no contain a maximum value. Instead the negative numbers have a
supremum or sup of zero, but zero is not a negative number, so zero is not in the set of
negative numbers. Thus the set of negative numbers does not contain its supremeum.
This is one of those properties of the real numbers that make calculus difficult and
leads to limits and other troublesome concepts. Because of this, many books use max–
min instead of sup–min since the term max–min is easier to understand. Technically,
if we want to be mathematically correct we should have the following definition.
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Definition 35 (sup–min composition). Let R ∈ F (X × Y ) and S ∈ F(Y × Z). The
sup–min composition of R and S, denoted by R ◦ S is defined as

(R ◦ S)(x, z) = sup
y∈Y

min [R(x, y), S(y, z)]

Example 55. Let X = {a, b}, Y = {1, 2, 3}, Z = {α, β}, and let R : X × Y → [0, 1] and
S : Y ×Z → [0, 1] are given in Eq. (8.8) then the sup–min composition of R and S, R ◦S,
is given by the table

R ◦ S α β

a 0.3 0.3
b 0.7 0.7

In the second graph in (8.2) the three paths from a to β have been emphasized.
Each path has two pieces, for example the edge α→1 and the edge 1→β form one
path from a to β. The edge weights are 0.8 and 0.3 respectively. If this path is stressed
then it will overload when the stress exceeds 0.3 since then the edge 1→β will break.
Thus each path is only as strong as its weakest link. There are three paths from a to β,
one each going through nodes 1, 2, and 3. We have already seen that the path through
node 1 breaks at stress level 0.3. The path through node 2 (α→2, strength 0.1, and
2→β, strength 0.3) breaks at stress level 0.1. The path through node 3 (α→3, strength
0.3, and 3→β, strength 0.1) also breaks at stress level 0.1. So when the stress hits 0.3
all three paths from a toβ are broken and that must be the strength of the relation
between a and β in R ◦ S.

Example 56. Consider two fuzzy relations

R = “x is considerable larger than y′′ =

R y1 y2 y3

x1 0.8 0.1 0.1
x2 0 0.8 0
x3 0.9 1 0.7
x4 0.8 0 0.7

and

S = “y is very close to z′′ =

S z1 z2 z3 z4

y1 0.4 0 0.9 0.6
y2 0.9 0.4 0.5 0.7
y3 0.3 0 0.8 0.5

.

Then their composition is

R ◦ S =

R ◦ S z1 z2 z3 z4

y1 0.4 0 0.9 0.6
y2 0.9 0.4 0.5 0.7
y3 0.3 0 0.8 0.5

Remark 8. The composition of R and S is performed very similarly to the classical
product of the matrices R and S. The difference is that instead of multiplication we
use the minimum operator and instead of addition we use the maximum operator.

We can also compose a fuzzy set with a relation, to produce a to produce a new
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fuzzy set.

Definition 36. If C is a fuzzy set on X and R is a fuzzy relation on X × Y then their
composition is

C ◦R (y) = sup
x∈X

min[C(x), R(x, y)]. (8.9)

Definition 37. If R is a fuzzy relation on X × Y and D a fuzzy set on Y then their
composition is

R ◦D (y) = sup
y∈Y

min[R(x, y), D(y)]. (8.10)

Example 57. Let C be a fuzzy set in the universe of discourse {1, 2, 3} and let R be a
binary fuzzy relation on {1, 2, 3}. Assume that C = {〈1, 0.2〉 , 〈2, 1.0〉 , 〈3, 0.2〉}

and that R is giving in the following table

R 1 2 3

1 1 0.8 0.3
2 0.8 1 0.8
3 0.3 0.8 1

. (8.11)

Using the definition of sup−min composition we get

C ◦R =
[

0.2 1 0.2
]
◦

 1 0.8 0.3
0.8 1 0.8
0.3 0.8 1

 =
[

0.8 1 0.8
]

so
C ◦R = {〈1, 0.8〉 , 〈2, 1.0〉 , 〈3, 0.8〉} .

Example 58. Let C be a fuzzy set in the universe of discourse X = [0, 1] and let R be
a binary fuzzy relation in X. Assume that C(x) = x and R(x, y) = 1 − |x − y|. Using the
definition of sup-min composition we get (C ◦R) (y) = supx∈[0,1] min [x,1− |x− y|] = 1+y

2
for all y ∈ [0, 1]. See Fig (8.3).

8.3.2. sup–t composition

As we saw in 6 on page 77, while min is the standard fuzzy operator for conjunction,
often specific applications call for the use of t–norms, such as the product. It is very
common to replace the minoperator in composition with a t–norms to produce sup–t
composition.

Definition 38 (sup–t composition). Let R ∈ F (X × Y ) and S ∈ F(Y × Z). The sup-t
composition of R and S, denoted by R ◦ S is defined as

(R ◦t S)(x, z) = sup
y∈Y

t [R(x, y), S(y, z)]

Definition 39. The sup-t composition of a fuzzy set C ∈ F(X) and a fuzzy relation R
∈ F (X × Y ) is defined as

(C ◦t R) (y) = sup
x∈X

t [C(x), R(x, y)]
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8.3. Fuzzy relations

Figure 8.3.: Sup-min composition of fuzzy set and fuzzy relation.

for all y ∈ Y .

Definition 40. The sup-t composition of a fuzzy relation R ∈ F (X × Y ) and a fuzzy
set D ∈ F(Y ) is defined as

(R ◦t D) (x) = sup
y∈Y

t [R(x, y), D(y)]

for all y ∈ Y .

It is clear that R ◦t S is a binary fuzzy relation in X × Z .

Example 59. Let C be a fuzzy set in the universe of discourse {1, 2, 3} and let R be a
binary fuzzy relation on {1, 2, 3}. Assume that C = {〈1, 0.2〉 , 〈2, 1.0〉 , 〈3, 0.2〉} and that R is
giving in the following table

R 1 2 3

1 1 0.8 0.3
2 0.8 1 0.8
3 0.3 0.8 1

. (8.12)

Suppose that we use the product t–norm. Using the definition of sup−t composition
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we get

C ◦R =
[

0.2 0.4 0.5
]
◦t

 1 0.8 0.3
0.8 1 0.8
0.3 0.8 1

 =
[

0.32 0.4 0.5
]

so
C ◦R = {〈1, 0.32〉 , 〈2, 0.4〉 , 〈3, 0.5〉} .

8.3.2.1. Transitivity

As is typical in fuzzy set theory, fuzzification introduces some new concepts and new
words into the lexicon. For example, suppose the relation R on X between elements
a and b is stronger than any two step connection from a to b through some c. By this
we mean that that the membership grade in the relation for the pair 〈a, b〉 is greater
than the membership grade of both 〈a, c〉 and 〈c, b〉 for any all c ∈ X . This property of
a relation is called sup-min transitivity .

Definition 41 (sup-min transitivity). If R, R : X ×X → [0, 1], is a fuzzy relation then it
is sup-min transitive if, for all ∀x, y ∈ X,

R(x, y) ≥ sup
z∈Z

min [R(x, z), R(z, y)] (8.13)

In the Chapter (6) this book explained that the standard min operator of Zadeh’s
original fuzzy set theory is sometimes replaced by an alternate intersection operator,
a t-norm. If we use this substitution in the definition of sup-min transitivity we get
sup-t transitivity .

Definition 42 (sup-t transitivity). If R, R : X ×X → [0, 1], is a fuzzy relation and t is a
t-norm then the relation R is sup-t transitive if

R(x, y) ≥ sup
z∈Z

t [R(x, z), R(z, y)] (8.14)

for all ∀x, y ∈ X.

Example 60. Let C be a fuzzy set in the universe of discourse {1 , 2 , 3}and let R be a
binary fuzzy relation on {1, 2, 3}. Assume that C = 0.2

1 + 0.4
2 + 0.5

3 and R is giving in the
following table

R 1 2 3

1 1 0.8 0.3
2 0.8 1 0.8
3 0.3 0.8 1

. (8.15)

Suppose that we use the product t–norm. Using the definition of sup−t composition
we get

C ◦R =
[

0.2 0.4 0.5
] t◦

 1 0.8 0.3
0.8 1 0.8
0.3 0.8 1

 =
[

0.32 0.4 0.5
]

so
C ◦R =

0.32

1
+

0.4

2
+

0.5

3
.

130



8.3. Fuzzy relations

The terms max-min transitivity and max-t transitivity are often used when sup-min
transitivity and sup-t transitivity are technically correct. .

8.3.3. Types of fuzzy relations

Definition 43 (fuzzy equivalence relation). If a fuzzy relation R : X × X → [0, 1],
is reflexive, symmetric, and sup–min transitive then it is called a fuzzy equivalence
relation, or a similarity relation Zadeh (1971).

Example 61. The table following presents a fuzzy equivalence relation S on X =

{a, b, c, d}

S a b c d

a 1.0 0.8 0.7 1.0
b 0.8 1.0 0.7 0.8
c 0.7 0.7 1.0 0.7
d 1.0 0.8 0.7 1.0

The α-cut of a fuzzy equivalence relation R are crisp equivalence relations.

Example 62. The α-cut of S given in Example (61) at α = 0.75 is an equivalence
relation as illustrated in the following table

0.75S a b c d

a 1 1 0 1
b 1 1 0 1
c 0 0 1 0
d 1 1 0 1

(8.16)

Example 63. The α-cut of S given in Example (61) at α = 0.85 is an equivalence
relation as illustrated in the following table

0.85S a b c d

a 1 0 0 1
b 0 1 0 0
c 0 0 1 0
d 1 0 0 1

(8.17)

An equivalence relation always produces a partition. In the example above (Eq.
(8.17)) 0.85S has partition classes {a, d}, {b}, and {c}. The partition corresponding to
0.75S (Eq. (8.16)) has classes {a, b, d} and {c}.

Note that as α increased in the two examples above the partition got finer. It is
not hard to see, or to prove, that the family of partitions of the alpha-cuts of a fuzzy
equivalence relation forms a nested sequence of partitions as α increases from zero
to one. This means each element of the α = 0.75 partition {{a, d} , {b} , {c}} is a subset
of the α = 0.85 partition {{a, b, d} , {c}}.

Definition 44 (fuzzy preorder relationship). A fuzzy relation that is reflexive, and
sup-min transitive is called a fuzzy preorder relationship on X.
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8. Relations

Figure 8.4.: Fuzzy order relation.

Example 64. The fuzzy relation R on X = {a, b, c} specified in the following equation
is a fuzzy preorder.

R a b c

a 0.2 1.0 0.4
b 0.0 0.6 0.3
c 0.0 1.0 0.3

(8.18)

Definition 45 (fuzzy order relationship). A fuzzy relation that is reflexive, antisym-
metric, and sup-min transitive is called a fuzzy order relationship on X.

Example 65. Fig. (8.4) gives a graphical version of a fuzzy order relation on X =
{a, b, c, d}.

Definition 46 (fuzzy partial order). A fuzzy relation that is reflexive, perfectly anti-
symmetric, and sup-min transitive is called a perfect fuzzy order relationship on X or
a fuzzy partial order relationship on X.

Definition 47 (fuzzy linear order). A fuzzy order such that for all x, y ∈ X; x 6= y
implies that either R(x, y) = 0 or equivalently R(y, x) = 0 is called a fuzzy linear order
on X (also called a total fuzzy order relation).

Definition 48 (compatibility relationship). A fuzzy relation that is reflexive and sym-
metric is called a compatibility relationship on X.
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8.4. Graph and fuzzy graph

Graphs can be used to represent relationships, both crisp and fuzzy. This chapter has
already presented relationships graphically without a precise definition of a graph.

Definition 49 (graph). A graph G is defined as an ordered pair: G = (V,E) where
V : Set of vertices. A vertex is also called a node or element.
E : Set of edges. An edge is an unordered pair (x, y) of vertices in V .

It is important to note that (x, y) is an unordered pair. This means that (x, y) = (y, x).
When we consider ordered pairs the structure is called a directed graph or digraph.

Definition 50 (digraph). A digraph G is defined as an ordered pair: G = (V,E) where
V : Set of vertices. A vertex is also called a node or element.
E : Set of edges. An edge is an ordered pair 〈x, y〉 of vertices in V .

A digraph is a data structure that expresses a relationship since we can consider
the edge set as a related pair. If 〈a, b〉 ∈ E then a R b and R ≡ E ⊆ V × V . In a regular
graph the edge (a, b) is an unordered pair and corresponds to both a R b and b R a so
that a graph expresses only symmetric relations.

When order is not allowed, we call a graph an undirected graph.
A path from x to y is a set of edges with continuous edges. If we set a0 = x and

an = y then a path is a set of edges (a0, a1), (a1, a2), (a2, a3), · · · , (an−1, an) with n ≥ 1
and (ai, ai+1) ∈ E for all 0 ≤ i ≤ n − 1. The length of path is a the number of edges in
this path (n in the previous example). When there exists a path from node a to b in G,
a and b are said to be connected. If all a, b ∈ V in graph G are connected, the graph G
is said to be a connected graph.

When sets X and Y (including the case where X = Y ) are given along with a crisp
relation R then we can define a directed graph GR(X ∪ Y,E) where 〈x, y〉 ∈ E iff x R y.

Definition 51 (fuzzy graph). A fuzzy graph G is defined as an ordered pair: G = (V,E)
where
V : Set of vertices. A vertex is also called a node or element.
E : Set of fuzzy edges. An edge is an element of the fuzzy set E : X × Y → [0, 1].

If we are given a fuzzy relation R ⊆ F(X × Y ) then we can define the fuzzy graph
GR(X ∪ Y,E), where E ≡ R. A fuzzy graph is essentially a classical weighted graph,
with the weights restricted to the unit interval.

A fuzzy graph is an expression of fuzzy relation and thus the fuzzy graph is fre-
quently expressed as fuzzy matrix.

Example 66. Fig (8.5) shows an example of fuzzy graph representing the fuzzy rela-
tion matrix MG given in Table (8.3).

8.5. Operations on fuzzy relations

Since fuzzy relations are simply fuzzy subsets of X × Y we can perform the familiar
fuzzy set operations upon them. For example, we can take the complement of a fuzzy
relation R. If we have two fuzzy relations R and S, both on X×Y then we can calculate
their intersection or union.
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Figure 8.5.: The fuzzy relation MG as a graph.

MG b1 b2

a1 0.8 0.2
a2 0.3 0.0
a3 0.7 0.4

Table 8.3.: A fuzzy relation matrix MG.

Definition 52. Let R be binary fuzzy relations on X × Y . The complement of R is
defined as

Rc(x, y) = 1−R(x, y) . (8.19)

Definition 53. Let R and S be two binary fuzzy relations on X × Y . The intersection
of R and S is defined by

(R ∩ S)(x, y) = min [R(x, y), S(x, y)] . (8.20)

Definition 54. Let R and S be two binary fuzzy relations on X × Y . The union of R
and S is defined by

(R ∪ S)(x, y) = max [R(x, y), S(x, y)] . (8.21)

Example 67. Let us define two binary relations

R = “x is considerable larger than y′′ =

R y1 y2 y3 y4

x1 0.8 0.1 0.1 0.7
x2 0 0.8 0 0
x3 0.9 1 0.7 0.8

(8.22)
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and

S = “x is very close to y′′ =

S y1 y2 y3 y4

x1 0.4 0 0.9 0.6
x2 0.9 0.4 0.5 0.7
x3 0.3 0 0.8 0.5

(8.23)

The intersection of R and S means that “x is considerable larger than y” and “x is very close
to y”.

(R ∩ S)(x, y) =

R ∩ S y1 y2 y3 y4

x1 0.4 0 0.1 0.6
x2 0 0.4 0 0
x3 0.3 0 0.7 0.5

The union of R and S means that "x is considerable larger than y ”or ”x is very close to y”.

(R ∪ S)(x, y) =

y1 y2 y3 y4

x1 0.8 0 0.9 0.7
x2 0.9 0.8 0.5 0.7
x3 0.9 1 0.8 0.8

8.5.1. Shadows

In 2.7 on page 20 we examined what happens when you take a set of ordered pairs
and look at only the elements in the first or second dimension. These were called
projections. We will now do something similar for fuzzy sets defned on ordered pairs.
The reults are called shadows.

Definition 55. Let R be a binary fuzzy relation on X × Y . The shadow of R on X is a
fuzzy set defined upon X with a membership function given by

shad1R(x) = sup
y∈Y

[R(x, y )] (8.24)

and the shadow of R on Y is dis a fuzzy set defined upon Y with a membership
function given by

shad2R(y) = sup
x ∈X

[R(x, y )] (8.25)

If X and Y are finite sets then sup, for supremum, can be replaces with the more
familiar max.

Example 68. Consider the relation R = “x is considerable larger than y” whose numerical
values are given above by Eq. (8.22), then the shadow on X means that x1 is assigned
the highest membership degree from the grades of the tuples 〈x1, y1〉, 〈x1, y2〉, 〈x1, y3〉,
and 〈x1, y4〉 in R, i.e. shad1R(x1) = 1 , which is the maximum of the first row. x2 is
assigned the highest membership degree from the tuples 〈x2, y1〉, 〈x2, y2〉, 〈x2, y3〉, and
〈x2, y4〉, i.e. shad1R(x2) = 0.8 , which is the maximum of the second row. . x 3 is
assigned the highest membership degree from the tuples 〈x3, y1〉, 〈x3, y2〉, 〈x3, y3〉, and
〈x3, y4〉, i.e. shad1R(x3) = 1, which is the maximum of the third row.
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8.5.2. Transitive closure

Let R be a binary relation on a set X. It is always possible to construct a relation that
is sup-min transitive, based upon R, by forming the transitive closure of R. To form
the transitive closure of R, set C = R and then repeatedly form D = (C ◦ C) ∪ C until
D = C, which it eventually must. This relation, C, is then the transitive closure of R.

Definition 56. Let R be a binary relation on a finite set X. Set C = R and the
repeatedly form D = (C ◦ C) ∪ C until C = D. The transitive closure of R is then C.

Example 69. Let R be the fuzzy relation:

R =


0.70 0.50 0.00 0.00
0.00 0.00 0.00 1.0
0.00 0.40 0.00 0.00
0.00 0.00 0.80 0.00


Set C = R and and form D = (C ◦ C) ∪ C:

D =


0.70 0.50 0.00 0.50
0.00 0.00 0.80 1.0
0.00 0.40 0.00 0.40
0.00 0.40 0.80 0.00


Since D 6= C replace C with D and calculate the new D = (C ◦ C) ∪ C:

D =


0.70 0.50 0.50 0.50
0.00 0.40 0.80 1.0
0.00 0.40 0.40 0.40
0.00 0.40 0.80 0.40


Again D 6= C so we replace C with D and calculate the next D = (C ◦ C) ∪ C:

D =


0.70 0.50 0.50 0.50
0.00 0.40 0.80 1.0
0.00 0.40 0.40 0.40
0.00 0.40 0.80 0.40


This is the same result as before so D is the transitive closure of R.

The same process can be applied using any sup-t composition to form the sup-t
transitive closure.

8.5.3. Distances and fuzzy relations

Distances 2.6 on page 18 can be used to construct fuzzy relations. The notion here
is that as things are closer, the are more related. The trick is the distance goes the
wrong way, and is potentially infinite. When the distance between A and B is zero
the objects are identical, which is very similar, so we want the relationship grade
to be one. As the distance gets bigger, and A and B are farther apart, we want
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Algorithm 8.1 Transitive Closure

Require: A set of data points X of size n.
Require: A relation R on X
1: Set D = R.
2: repeat
3: C ⇐ D
4: D ⇐ (C ◦ C) ∪ C
5: until C = D

{It can be proved that the algorithm will always terminate}
6: Return R∗ = D, the transitive closure of R

the relationship grade to decrease towards zero. The following makes this intuitive
notion precise.

For fuzzy set theory, the important thing about distances is, given two points x1
and x2, both elements of X, the distance, dist(x1, x2), is a non-negative real number.
Suppose f(z) is a monotonic (usually decreasing) function that maps the non-negative
reals into the unit interval, i.e., Z = R+ and for z ∈ Z we have that f(z) ∈ [0, 1]. There is
now an instant conversion between any distance measure between points in X and a
fuzzy relation on X. The membership degree of this relation R is given by the formula

R(x1, x2) = f (dist(x1, x2)) .

Example 70. Let Z = R+ and X = R2. Define f(z) = 1 − e−z for z ∈ Z and use the
Euclidean distance dist(〈x1, y1〉 , 〈x2, y2〉) for 〈x, y〉 ∈ R2. Then the fuzzy relation on X
induced by f and dist is given by

R(〈x1, y1〉 , 〈x2, y2〉) = 1− e−
√

(x2−x1)2+(y2−y1)2

When 〈x1, y1〉 = 〈1, 5〉 and 〈x2, y2〉 = 〈4, 1〉 then
√

(x2 − x1)2 + (y2 − y1)2 = 5 and

R(〈x1, y1〉 , 〈x2, y2〉) = 1− e−5

= 0.993 .

8.6. Notes

The basic ideas of fuzzy relations and the concepts of similarity and fuzzy ordering
were introduced by Zadeh (1971). Binary fuzzy relations were further investigated
by Rosenfeld (1975), Yeh and Bang (1975), Yager (1981), and Ovchinnikov (1984).
There is an excellent chapter on fuzzy relations in Kaufmann (1975).

The concepts of projection, cylindric extension, and cylindric closure appeared in
their crisp version in Ashby (1964) and in their fuzzy versions in Zadeh (1975b) and
Zadeh (1975a).
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8.7. Homework

Given the universes

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Y = {1, 2, 3}
Z = {a, b, c}
U = {α, β, γ}
V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

and the fuzzy sets and fuzzy relations

A(x) =
x

10

B(x) =
|x− 5|

5

C(x) =

{
9−|2x−9|

8 1 ≤ x ≤ 8

0 otherwise

D(x) = 0.8

E(x) = {〈1, 0.2〉 , 〈2, 0.6〉 , 〈3, 0.4〉}
F(y) = {〈a, 0.3〉 , 〈b, 0.7〉 , 〈c, 0.9〉}
G(z) = {〈α, 0.5〉 , 〈β, 0.8〉 , 〈γ, 0.35〉}

R a b c

1 1.0 0.5 0.1
2 0.4 1.0 0.2
3 0.6 0.5 1.0

S α β γ

a 0.9 0.5 0.1
b 0.4 0.7 0.2
c 0.6 0.5 0.9

T α β γ

α 0.8 0.4 0.4
β 0.4 0.7 0.7
γ 0.6 0.5 0.9

E a b c d e f

a 1.0 0.8 0.0 0.0 0.0 0.0
b 0.8 1.0 0.0 0.0 0.0 0.0
c 0.0 0.0 1.0 1.0 0.8 0.0
d 0.0 0.0 1.0 1.0 0.8 0.7
e 0.0 0.0 0.8 0.8 1.0 0.7
f 0.0 0.0 0.0 0.7 0.7 1.0
F Γ ∆ Θ Φ

Γ 1.0 0.2 0.2 0.6
∆ 0.2 1.0 0.4 0.2
Θ 0.2 0.4 1.0 0.2
Φ 0.6 0.2 0.2 1.0

Given the above information, try to answer the following questions.

1. What is A×B?

2. What is B ×A?

3. What is A× C?

4. What is C ×A?
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5. What is C ×B?

6. What is B × C?

7. What is D ◦R?

8. What is D ◦ S?

9. What is E ◦R?

10. What is E ◦ S?

11. What is F ◦R?

12. What is F ◦ S?

13. What is S ◦ T?

14. What is T ◦ T?

15. What is S ◦ T ◦ T?

16. What is T ◦ T ◦ T?

17. What is E ◦ E?

18. What is E ◦ E ◦ E?

19. What is the projection of the fuzzy set R into X?

20. What is the projection of the fuzzy set R into Y ?

21. What is the cross product of the projections of R into X and Y ? How does this
result compare with the original fuzzy relation R?

22. What is the projection of the fuzzy set S into Y ?

23. What is the projection of the fuzzy set S into Z ?

24. What is the cross product of the projections of S into Y and X? How does this
result compare with the original fuzzy relation S?

25. What is the shadow of the fuzzy set T into Z in the first dimension?

26. What is the shadow of the fuzzy set T into Z in the second dimension?

27. What is the cross product of the shadows of T into Z in the first and second
dimensions? How does this result compare with the original fuzzy relation T?

28. What properties (symmetric, reflexive, etc., see Table 8.2) does T possess?

29. What properties (symmetric, reflexive, etc., see Table 8.2) does E possess?

30. Is E a similarity relation? What is its image set? List the α–cuts of E for each
value α in the image set.
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31. Let H be the set of your High School friends. Let W be the relation walking
distance. Decide how you will define the relation g is within walking distance to
h. Draw a graph the result relation, as in Fig. (8.4). What kind of relation is W .

32. Let H be the set of your High School friends. Let Q be the relation is friends
with. Decide how you will define the relation g is friends with h. Draw a graph
the result relation, as in Fig. (8.4). What kind of relation is W .
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9. Fuzzification

9.1. Introduction

A cook is only as good as his ingredients. A mechanic is only as good as his tools.
It is true that a better chef will cook a better dish with the same ingredients and a
better mechanic will do a better repair job with the same set of tools. But it is hard
to cook anything good from rotten vegetables, and it is hard to fix a flat tire without
a lug-wrench, a jack and a spare tire.

While fuzzy sets are used to represent indeterminacy and are not designed to be a
precise representation, it is also true that a poor representation will create a system
that is useless for any constructive purpose. A system that represents young as a fuzzy
set centered on the ages 90–100 would not be appropriate even in a geriatric facility.

An engineer who is using fuzzy sets is seeking an optimal controller. An computer
scientist who is using fuzzy sets for data mining is looking for a superior sieve. An
analyst who is using fuzzy sets for clustering is looking for a valuable association.

Definition 57 (fuzzification). The construction and design of fuzzy set membership
functions.

The question then is how do we construct good fuzzy sets from data and how do we
change the fuzzy sets adoptively. The methods fall into three broad categories; man-
ual, automatic, and adaptive. Manual methods primarily deal with evidence obtained
from human responses. Automatic methods are primarily used for processing data
sets to determine appropriate fuzzy set representation. Adaptive methods search for
an optimal system design. In this chapter we will examine some of the most common
methods in use for the design and construction of fuzzy sets.

9.2. What is a fuzzy set?

There are three major ways of looking at a fuzzy set for the purpose of construction:
vertical, horizontal, and random set.

9.2.1. Vertical

The vertical view of a fuzzy set is the membership function view. For each x ∈ X
the membership function µA(x) gives the degree of compatibility of the element x
with the category or linguistic term A presently under discussion. It has always
been the assumption that the greater the membership value, µA(x), the greater the
compatibility of x with the concept represented by A. Therefore to construct µA(x)
vertically from information about x, it is necessary that the data allows one to order
the compatibility of x with the concept A.
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Class Worksheet Card
1. Circle the number in the scale 0-10 that represents how much you agree with

the statement.

I.1 A five year old human is young. 0 1 2 3 4 5 6 7 8 9 10

I.2 A five year old human is very young. 0 1 2 3 4 5 6 7 8 9 10

I.3 A six year old human is young. 0 1 2 3 4 5 6 7 8 9 10

I.4 A four year old human is young. 0 1 2 3 4 5 6 7 8 9 10

I.5 A four year old human is very young. 0 1 2 3 4 5 6 7 8 9 10

I.6 A six year old human is very young. 0 1 2 3 4 5 6 7 8 9 10

I.7 A seven year old human is young. 0 1 2 3 4 5 6 7 8 9 10

I.8 A three year old human is young. 0 1 2 3 4 5 6 7 8 9 10

II Answer the following questions with numerical values between 1 and 100 years.

II.1 What range of ages do you consider young? to

II.2 What range of ages do you consider old? to

II.3 At what height do you consider a woman short?

II.4 What range of ages do you consider middle aged? to

II.5 What age do you think of when someone says infant?

II.6 What age do you think of when someone says ancient?

II.7 What range of ages do you consider the prime of life? to

II.8 What range of ages do you consider very young? to

II.9 What range of ages do you consider not old? to

II.10 What age do you think of when someone says geriatric?

II.11 What age do you think of when someone says child?

II.12 What range of ages comes to your mind when you here someone say “not
very young?” to

III For the following questions, rate your agreement with a Likert Scale:
Strongly disagree ←→ 1

Disagree ←→ 2
Neutral ←→ 3
Agree ←→ 4

Strongly agree ←→ 5

III.1 I would pay $9 for a good steak dinner.

III.2 I would pay $8-$10 for a good steak dinner.

III.3 I would pay $7-$11 for a good steak dinner.

III.4 I would pay $6-$12 for a good steak dinner.

III.5 I would pay $5-$13 for a good steak dinner.



9.2. What is a fuzzy set?

9.2.1.1. The standard vertical transformations

Since the membership function of a fuzzy set always takes values in [0, 1] the standard
vertical transformation of any function f : X → R (or data set) into a fuzzy set F with
membership µF is

µF (x) =
f(x)− fmin

fmax − fmin

where fmin and fmax are the minimum and maximum values obtained by the function
(or data) over the domain set X. If the function maps to the nonnegative reals,
f : X → R+, or the data are all positive, then it is sometimes assumed that fmin = 0
and the formula

µF (x) =
f (x)

fmax

is used.

9.2.2. Horizontal

The horizontal view of a fuzzy set is the α–cut. This is an interval associated with
each α ∈ [0, 1]. If we think of α as a confidence factor or surety level, then we can
interpret the α–cut as the x values that we are at least α sure are compatible with
the concept or label A. The decomposition theorem 5.39 ensures that the fuzzy set
membership function can be constructed from the parametric family of its α–cuts.
Therefore, if one can determine the α–cuts then one can determine the fuzzy set.
When α is 1 we need to determine the smallest and largest values of x that are
completely compatible with the concept or category A. When α is 0.5 we need to
determine the smallest and largest values of x that are half-way compatible with or
50% surely possess the concept or category A.

9.2.2.1. The standard horizontal transformations

When we determine enough α-cuts, αA, we can produce a model of the membership
function µA(x) using the formula

µA(x) = sup
α∈[0,1]

{α | x ∈ αA}

9.2.3. Random set

Suppose that X is discrete. Even if X is not discrete, it can almost always be rep-
resented by a discrete sampling. DVDs and CDs show that continuous phenomena,
like acting and music can be digitized. Digitization turns continuous phenomena into
discrete phenomena.

Example 71. Let us take a simple triangular fuzzy number one, Tr[0, 1, 2]. If we
sample this function every 1

4 of a unit form 0 to 2 we get the discrete fuzzy number,
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Figure 9.1.: Triangular fuzzy number Tr and its discrete version.

using fraction notation,

Tr′ =
0.0

0.0
+

0.25

0.25
+

0.5

0.5
+

0.75

0.75
+

1.0

1.0
+ (9.1)

0.75

1.25
+

0.5

1.5
+

0.25

1.75
+

0.0

2.0

as seen in Fig. (9.1).

Let A be a fuzzy set on discrete X. Let I(A)′ be the image set of A minus the set {0}
and with the membership grades sorted in decreasing order:

Λ(A) = [α1, α2, α3, · · · , αn]

where α1 > α2 > α3 > · · · > αn > 0 and set αn+1 = 0 where n =
∣∣Λ(A)

∣∣. Define mi =
αi − αi+1 for i ∈ Nn. Then the random set representation of A is

ρA = {〈αiA,mi〉 | αi ∈ Λ′A} .

We can reconstruct the membership function of A from its random set representa-
tion:

µA(x) =
∑
x∈αiA

mi

where 〈αiA,mi〉 ∈ ρA. There is also a connection between the random set interpreta-
tion and the possibility theory interpretation of fuzzy set theory.

Example 72. For the discrete fuzzy set Tr′ of Eq. (9.1) the image set is in decreasing
order with zero omitted is

Λ(Tr′) = [1.0, 0.75, 0.5, 0.25] (9.2)
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and the random set representation is

ρTr′ =


〈 {1.0} ,0.25〉 ,

〈 {0.75, 1.0, 1.25} ,0.25〉 ,
〈 {0.5, 0.75, 1.0, 1.25, 0.75, 1.5} ,0.25〉 ,

〈 {0.25, 0.5, 0.75, 1.0, 1.25, 0.75, 1.5, 1.75} ,0.25〉

 . (9.3)

We can recover the membership grades by adding the m values for each set in ρTr′
that contains x.

Tr′(0.5) = 0.25 + 0.25 . (9.4)

9.2.4. Parametric fuzzy sets

There is one other common method of constructing fuzzy sets. If experience has
shown that triangular, or trapezoidal, or some other basic shape of fuzzy set seems
to work in a particular application, then mathematical techniques can be used to
search for the optimal parameters of the basic fuzzy set shape. These techniques are
similar to finding a trend line or regression line in statistics.

For example, if triangular fuzzy sets will work in a particular application, then they
always have the form Tr[a,m, b]. Thus Tr is a function that has three parameters:
a, m, and b. There are many mathematical search techniques, such as least square
error fitting, that may be able to find the appropriate values of a, m, and b given an
appropriate data set.

Example 73. This is essential the reverse of the digitization process illustrated in
Fig. 9.1. The idea here is to take the data pairs presented in Zadeh fraction notation
in Eq. (9.1) and recover the triangular fuzzy set function

Tr[0, 1, 2] =

{
x 0 < x < 1

2− x 1 ≤ x < 2
. (9.5)

9.3. Manual methods

Various statistical techniques are often used in the determination of fuzzy set mem-
bership functions. In Watanabe (1993) the author asserts that these statistical tech-
niques fall into two broad categories: the use of frequencies and direct estimation.
The first methodology, the frequency method, obtains the membership function by
measuring the percentage of people in a test group (typically experts in the par-
ticular domain under consideration) who answer affirmatively to a question about
whether an object belongs to a particular set. The second methodology, direct es-
timation, derives its values from a sliding scale, it elicits a responses from experts
that grade the compatibility of the object and the set. Experiments conducted by
Watanabe came to the conclusion that direct estimation methods are superior to the
frequency method. In Turksen (1991) the author examined four different approaches
(that include Watanebe’s) to the acquisition of membership functions: direct rating,
polling, set valued statistics and reverse rating. Turksen uses a system that is very
similar to the linguistic system 〈x, T (x), U,G,M〉 introduced in Chapter (16) His nota-
tion includes:-
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1. The set of elements θ ∈ Θ, the domain, (U in Zadeh’s linguistic system);

2. V , a linguistic variable which is a label for θ ∈ Θ (x in Zadeh’s linguistic system);

3. A, a linguistic term of a linguistic variable (T (x) is the set of terms in Zadeh’s
linguistic system);

4. A measurable numerical assignment interval X ∈ [−∞,∞];

5. µA(θ), the membership value representing the degree of membership of θ to the
set of elements determined by linguistic term A, (MA(u) in Zadeh’s linguistic
system).

For example when considering the set of men we have a ‘man’ , θ, in the set ‘men’,
Θ, whose height, V , describes how ‘tall’, A, he is. For example the height might be
in the range [0, 4] meters, X, and how tall Michael Jordan might be is the value of the
membership function µtall(MJ). Direct rating presents randomly selected θ ∈ Θ, with
values V (θ) ∈ X to subjects who answer the question “How A is θ (V (θ))?” . In other
words the question put to the expert is “How tall is Michael Jordan?” (note that ‘tall’
is different from ‘height’) and they respond by using a simple indicator on a sliding
scale. Then, using the experts’ opinion of the range of heights, a simple calculation
reveals µtall(MJ). This experiment is repeated for other men and the same candidate,
Michael Jordan, repeatedly to reduce error. Polling asks a different question “Do you
agree that θ is A?” expecting a yes or no response. The ratio of yes responses to
total responses is used to arrive at a proportion that is then used to help generate
the membership function. So, in our example, many respondents would be asked
“Do you agree that Michael Jordan is tall?”. Set valued statistics rely on the idea
of combining ordinary sets using a frequentist approach based on observation. This
method asks questions such as “Is the range 6 feet to 7 feet correctly termed tall?”
Frequencies gained from asking this question repeatedly are then amalgamated to
produce a fuzzy set membership function. Reverse rating takes a different approach
by asking an expert to answer the following question “Identify θ(V (θ)) that has the y-
th degree of membership in fuzzy set A.” So we might ask an expert “Identify a man
whose height indicates that he possesses the degree 0.5 of membership in the fuzzy
set tall. Again, providing the expert has an understanding of the upper and lower
limits this allows for a ready representation of µtall. Other authors (e.g. Kempton
(1984)) employ various knowledge acquisition interviewing techniques for acquiring
membership functions.

All the ‘manual’ approaches suffer from the same deficiency; they rely on the very
subjective interpretation of words, the foibles of human experts, and generally, all
the knowledge acquisition problems that are well documented with knowledge based
systems.

9.4. One Expert

If there is one expert available who can manage a system and the goal is to automate
his skill before he retires then direct questioning is the best available method. How-
ever the elicitation of knowledge from an expert is a very difficult and specialized
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skill. An expert may be cooperative or antagonistic, he may not consciously have
numerical values associated with the rules he uses to control the process. He may
not even have encapsulated his knowledge as rules, since he may not have trained
a replacement. Furthermore, some rules may be used so seldom that only the dire
circumstances of their necessity can bring them forth from long term memory.

This is very similar to the problems posed by constructing inference engine expert
systems or knowledge based systems (KBS). In fact this problem is similar to the
common computer science dilemma of requirements specification. The elicitation of
knowledge from the problem domain and its experts, who speak their own language,
is a difficulty common to all software engineering. As such, the literature on these
subjects does give some guidelines.

First of all patience is required. The expert may be trying to be helpful, even if
his answers are not taking the form that you like. It may be necessary to try many
different approaches, and many different questions to infer the shape of a fuzzy set.
Practice has shown that triangular and trapezoidal fuzzy sets work very well in many
applications so that the elicitation of critical values with questions like:

What rate of change in velocity causes you to start paying close attention?
Ans: a.

What rate of change in velocity causes you to start action Bji?
Ans: b.

What rate of change in velocity causes you to start an action other than
Bj?
Ans: c.

What rate of change in velocity generally indicates the process is out of
control?
Ans: d.

It is important not to put the questions in direct order, and possibly not to ask them
all at the same time. Cognitive psychology has many things to say about the best
methodologies of questioning people. However, if the answers to these questions
form an order a ≤ b ≤ c ≤ d then Ai = Tp [a, b, c, d] is a good fuzzy number to represent
the critical velocity. Note that experts give us both knowledge of the fuzzy set mem-
berships as well as (possibly) knowledge of the inference rules for the construction
of an Approximate Reasoning system.

In other cases it may be difficult for the expert to give precise numerical values
to such questions, however range values are almost as good, and sometimes all that
is really needed is to find the core of the fuzzy numbers even if this is just a single
value. A group of statement such as:

“When the temperature is about 110◦ then lower the boiler feed by about
two liters of foo.”

“When the temperature is about 125◦ then lower the boiler feed by about
three liters of foo.”

“When the temperature is about 140◦ then lower the boiler feed by about
six liters of foo.”

gives the critical central values a1 = 110, a2 = 125, and a3 = 140 for triangular fuzzy
numbers Ai = Tr [ai − si, ai, ai + si] and b1 = 2, b2 = 3, and b3 = 6 for triangular fuzzy
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numbers Bj = Tr [bj − sj , bj , bj + sj ]. The spread values of si and sj , i, j ∈ N3, can be
determined graphically using the granularity heuristic that the fuzzy sets Ai should
cover the critical range of the input space and have a 10—20% overlap with the neigh-
bors on each side. Thus if the critical range of temperatures is 100◦—150 then the
three antecedent fuzzy sets

A1 = Tp [100, 110, 120] (9.6)

A2 = Tr [115, 125, 135] (9.7)

and
A1 = Tp [130, 150, 150] (9.8)

partition the input interval appropriately. The fuzzy sets B1, B2, and B3, can be simi-
larly constructed once the range of its domain set is determined.

9.5. Many Experts

The problem of determining fuzzy set membership grades when many experts are
available has both positive and negative aspects. On the plus side, a weighted aver-
age of values obtained from the group of experts certainly contains a greater amount
of information than that derived from a single person. However, the determination
of appropriate weights and the melding of potentially conflicting evidence presents
difficulties.

Suppose that there are n experts available. Assume that the experts evidence
comes as polling. We are asking the question “Does θ belong to A?” or, equivalently,
“Does x belong to A?” where θ has value x. That is, Michael Jordan has height 6′ 7′′ so
one can ask, “Does Michael Jordan belong to tall?” or, equivalently, “Does 6′ 7′′ belong
to tall?” Then each expert i(i ∈ Nn), gives a value ai(x) for each x ∈ X that is either 0 if
the expert does not believe the statement is true, or 1 if the expert does believe the
statement is true. We can then use the simple approximation

µA(x) =

∑n
i=1 ai(x)

n
(9.9)

for the set membership grade. If on the other hand the values ãi(x) are derived from
direct polling then they may not be values in the unit interval. However the linear
transformation

ai(x) =
ãi(x)− amin

amax − amin
(9.10)

where amax and amin represent the maximum and minimum values that the scale al-
lows, will transform the data so that Eq. (9.9) is applicable.

In the absence of additional information we must assume that all experts are equally
qualified. Of course there may be reason to trust more experienced experts more
than their less seasoned colleagues.. The uniform weight of ci = 1

n represents equal
confidence in all experts. We can then express the Eq. (9.9) in the form

µA(x) =
n∑
i=1

ci · ai(x) (9.11)
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However, if years of experience or breadth of knowledge is incorporated in a weigh-
ing system other than uniform then the values of ci, i ∈ Nn, should be nonnegative
and add to one. Here again the values of ai(x) may come from polling or from direct
estimation.

9.5.1. Indirect methods

Both the method for one expert and the method for multiple experts can be extrapo-
lated to the case where the data is specified as intervals. Turksen calls this set valued
statistics. As mentioned previously, an expert will probably refuse to give information
he believes is misleading. This may cause him to make statements such as;

“When the temperature is between 120◦ and 130◦ then lower the boiler
feed rate by about three liters of foo.”

We can gather data about the intervals as easily as we gathered data about exact
values. For example, the question “Is the range 6 feet to 7 feet correctly termed
tall?” can be asked of each expert and the number of agreements for each interval
calculated. Assume that m intervals are used in the questions or presented by the ex-
perts. Relative frequencies can then be calculated so that each interval gets a weight
li equal to the number of agreements that interval Li is correctly termed A divided by
the number of agreements to all intervals. Finally the fuzzy set membership grade is
calculated as

µA(x) =

∑
x∈Li li∑m
i=1 li

. (9.12)

This methodology has a strong connection to random set theory.
Another indirect method is based on the ability to compare objects. If there are

n different values that we are going to use to determine the fuzzy set membership
function, then it may be easier to get answers to questions of the type, “How much
more A is xi then xj?” For example, “How much more Taller is Reggie Miller then
Cheryl Miller?” If we can determine a preference matrix P = [pij ]nn that is consistent
(consistency means pij = pik · pkj) then we may be able to determine the individual
membership grades mi = µA(xi) by assuming that pij = mi

mj
. Under this assumption

n∑
j=1

pijmj =
n∑
j=1

mi = nmi . (9.13)

or in matrix form
Pm = nm (9.14)

where the vector m = [mi]
T
n are the membership grades to be determined. Equation

(9.14) can be written
(P− nI)m =0 (9.15)

where I is the identity matrix. This equation has a solution if and only if m is an
eigenvector of the matrix P− nI and n is an eigenvalue. A final assumption is neces-
sary to complete the derivation. If m is a solution to Eq. (9.15) than so is any scalar
multiple. Hence a unique final solution comes only if we assume that max mi = 1 or
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some smaller positive value. Another method is to assume that
∑
mi = 1. In this case

n∑
i=1

pij =
n∑
i=1

mi

mj
=

1

mj

n∑
i=1

mi =
1

mj
(9.16)

where
mj =

1∑n
i=1 pij

. (9.17)

If the data is slightly inconsistent then it may still be possible to find a solution to
the linear equation

Pm =λm (9.18)

for some eigenvalue λ that is close to n. Then λ−n
n can be used as a measure of

accuracy of the estimate. If this value is large the estimate is poor and the data is
just too inconsistent.

9.6. Data driven methods

9.6.1. Curve fitting

If there is a data set that can be used as a basis for the construct of the fuzzy set
membership functions then a host of methods are available. The first is the common
mathematical methods of curve fitting. For example, besides triangular and trape-
zoidal curves, Gaussian bell shaped curves with generic formula

Tb [m, s, γ] (x) = γ e−(x−m)2/s2 (9.19)

m, s, and γ all positive, are common in mathematics. If we assume that there are n
data points 〈ai, bi〉 then the value

E =
n∑
i=1

(
bi − γ e−(ai−m)2/s2

)2
(9.20)

is the total squared error between the curve Tb and the given data points. This can be
minimized easily and rapidly on a computer using any standard numerical technique.
The solution is a the least squared error estimate of the fuzzy bell number. The result
will not always be a fuzzy set for arbitrary α, β, and γ. It is then necessary to either
truncate or scale the result so that it never exceeds the threshold of 1.0.

Entirely similar methods can be applied with triangular fuzzy numbers Tr [a,m, b]
and trapezoidal fuzzy numbers Tp [a, l, r, b] to determine the values of the parameters
a, b, . . . , that minimize the least squared error.

Almost any curve fitting methodology in the mathematical canon can be adapted
to finding fuzzy set membership values. These include regression and Lagrangian
interpolation.
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9.6.2. Histograms

Sometimes it makes more sense to fit the curve to the histogram of the data set. This
is the case when we do not have input-output pairs, rather we have a large sample
of the input values that are not correlated with a controlled output. This is the case
when no successful control, human or machine, exists.

If we have n elements 〈ai, bi〉 in a data set then the first step is to find amin and amax,
the minimum and maximum value obtained by the first value in the ordered pair. The
next step is to divide the interval amin to amax into m segments, where m is usually
much smaller than n. For each interval

[aj−1, aj ] (9.21)

where a0 = amin and for j ∈ Nm

aj = ao + j · amax − amin

m
(9.22)

we calculate the number, hj, of points ai that fall into the interval [aj−1, aj ]. Let hmax

be the maximum value obtained by data set {hj} and let

ĥj =
hj
hmax

(9.23)

Also calculate âj, the midpoint of each interval with

âj =
aj−1 + aj

2
(9.24)

Finally we can now use the set of points
〈
âj , ĥj

〉
for curve fitting as described in the

previous section.

9.6.3. Histograms for discrete data

If the data can only take on limited values, the histogram method can be simplified.
Suppose that we are using observational data. For example the data might be the
number of cups of coffee that employees drank on a certain day at the office. For
discrete data, that can only take on a fixed set of values, the standard method of
fuzzification is to use frequency data.

Suppose that the data can only take values in X with |X| = n. For the coffee exper-
iment, the employees only drank 2 to 5 cups, and the number of cups is always an
integer. We can then process the the data to calculate frequencies fi for i ∈ Nn. The
frequency fi is just the count of the number of times that xi occurs in the data set d.

Example 74. LetX = {2, 3, 4, 5}. Let us convert the information in data = [5, 3, 4, 2, 4, 3, 4, 2]
into frequencies. The value 5 occurs once, the value 4 occurs three times, and the
values 2 and 3 occur twice each. A graph of the frequency data is called a histogram.
If we then divide the frequencies by the largest of the frequencies, 3, we produce
a fuzzy set D. These results are summarized in Table (9.1). The graphical result is
illustrated in Fig. (9.2).
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xi fi D(xi)
2 2 0.667
3 2 0.667
4 3 1.0
5 1 0.333

Table 9.1.: Frequency table.

Figure 9.2.: Using a histogram to generate a fuzzy set.

9.7. Adaptive methods

The most important automatic methods for determining membership functions in-
clude:

• Artificial Neural Networks,

• Genetic Algorithms,

• Deformable Prototypes,

• Gradient Search, and

• Inductive Reasoning

One of the most common methods of calculating the fuzzy set membership func-
tions from data is the use of neural networks. There are many advantages to this
methodology. First, it makes no assumptions about the appropriate shape to fit to
an input-output data set 〈ai, bi〉. Secondly, it functions well empirically regardless of
the nature and source of the data set. Third, it can be employed on-line, or off-line,
to continuously refine the membership functions in the face of new behavior of the
system which one is trying to control. This adaptive behavior is particularly desirable
in the construction of robust systems.
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9.7.1. Neural network

A neural network is a (computer) simulation of the architecture used in the human
brain. The brain of all animals in fact are made of a very large collection of processing
units called neurons.. The neurons are connected together in a large network that
takes in information from our senses and processes it for recognition and subsequent
action.

Neural networks have the additional advantage of robustness and adaptability. A
neuro–fuzzy controller can be built that changes the fuzzy set membership functions
over time as conditions change. This allows a fuzzy controller for a dam to deal with
drought and flood as well as the typical situation. Neural networks are so important
to fuzzy applications that there is a supplamentary Chapter online at http://duck.
creighton.edu/Fuzzy/ to their description and use.

9.7.2. Genetic algorithm

Genetic algorithms are biologically inspired techniques to evolve better fuzzy sets.
To accomplish this evolution the computer needs a goal. The goal in fuzzy set theory
is better fuzzy logic controllers. Genetic algorithms, like neural networks, are im-
portant enough to deserve their own separate Chapter at http://duck.creighton.edu/
Fuzzy/.

9.7.3. Deformable prototypes

An early approach by Bremermann is based on the idea of a deformable prototype.
Devised initially for pattern recognition, it appears to be a potentially useful method
for automatic determination of membership functions. It is based on the concept
of taking an object which needs identifying and deforming it to match a prototype.
The amount of matching and distortion are measured by a distortion function and a
matching function to combine to give a cybernetic functional. In other words there
is a combination of the matching of an object to a prototype and the distortion re-
quired to deform the prototype. Using Bremermann’s notation the matching func-
tional would be

〈M (Φi (p1, p2, . . . , pn)) , φ〉 (9.25)

where φ is object Φi is the ith prototype, and p1, p2, . . . , pn are the parameters that
control the distortion of the prototype. Denote

D (Φi (p1, p2, . . . , pn)) (9.26)

to be the distortion function then the cybernetic functional for the ith prototype can
be defined by

〈(fi, φ)〉 = min
p1,p2,...,pn

〈Fi (p1, p2, . . . , pn) , φ〉 (9.27)

where

〈Fi (p1, p2, . . . , pn) , φ〉 = 〈M (Φi (p1, p2, . . . , pn)) , φ〉 (9.28)

+ cD (Φi (p1, p2, . . . , pn)) (9.29)
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9. Fuzzification

and c is a constant. Bremermann then goes on to explain that this cybernetic func-
tional can be used to generate a membership function

χ(φ) = 1− 〈f, φ〉
max

(9.30)

where max is the least upper bound for f . This initial suggestion seems to have been
hampered by the speed of computers and techniques available at the time to carry
out the optimization of the parameters. However Bremermann (1976) reports on
successful implementations for pattern recognition and in particular for fuzzy sets
in ECG interpretation. This does raise the question of whether, for instance, genetic
algorithms may be useful in conjunction with this technique. This work still raises
questions about arriving at a suitable prototype and choosing the various functions.

9.7.4. Gradient search

Based on the original work of Procyck and Mamdani (1979), Burkhardt and Bonis-
sone (1992) use gradient search methods to tune fuzzy knowledge bases. They fine
tune the rules (see Chapter (17)) and also the membership function for a fuzzy logic
controller. They assume first, as with most fuzzy logic controllers, that the mem-
bership functions are triangular and then they use gradient search to determine the
optimal scaling factor for the base of the triangles. This optimization is carried out
on an application of fuzzy logic control to the cart-pole system (this is the standard
example, and will be explained in detail in Chapter (18)) where the goal is to maintain
the time the pole is vertical on the cart while reducing overshoot (the pole falls off)
and steady state error (the pole wobbles a lot). They present a variety of results and
draw the conclusion that this approach out-performed a simple controller.

9.7.5. Inductive reasoning

The approach adopted by Kim and Russell (1993) is to use inductive reasoning to
generate the membership functions and the rules. They assume they have no infor-
mation other than a set of data. The approach is to partition a set of data into classes
based on minimizing the entropy. The entropy where only one outcome is true is the
expected value of the information contained in the data set and is given by

S = kΣNi=1[pi ln pi + (1− pi) ln(1− pi)] (9.31)

where k is an arbitrary constant, the probability of the i-th sample to be true is pi,
and N is the number of samples. In their work they give a two class example where
by iteratively partitioning the space they calculate an estimate for the entropy which
leaves them with points in the region that are then used to determine triangular
membership functions. This approach suffers from the fact that there is no way of
knowing whether the membership functions are realistic and that the sets obtained
are triangular.
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9.8. Notes

Early survey work on fuzzification is presented in Turksen (1991). Klir and Yuan
(1996) devotes a Chapter of their book to the construction of fuzzy membership func-
tion. More references to fuzzy set construction are in the Notes section of the Neural
Net chapter at http://duck.creighton.edu/Fuzzy/.

9.9. Homework

1. Obtain some color samples sheets from a paint store or department store that
sells paint. You could also use a color printer to produce color swatches. Num-
ber all the color sheets on the back and present them in random order to an
audience. Give them a sheet of paper with the numbers in a list. For each sheet
have them answer the question “How red is this sheet?” Having the audience
rate the redness using values in the 0-10 range since this data is easy to process.
You can choose some other color than red of course. If you use a color printer
then each color sheet has a redness value that can be read from the computer.
For paint sheets a scanner can provide an absolute redness. Consider this data
as a basis for construction of a fuzzy set for redness perception. How well does
the audience do when compared with the computer or scanners redness rating.

2. Apply the indirect method with one expert for the data in the relative wealth
table to determine a fuzzy set that describes the degree of membership of each
person in the fuzzy set rich.
Wealth Alex Bela Cora Dean Eden Fara

Alex 1 3 4 2 7 5
Bela 1

3 1 1 3 5 6
Cora 1

4 1 1 5 4 3
Dean 1

2
1
3

1
5 1 1

2
1
2

Eden 1
7

1
5

1
4 2 1 1

3

Fara 1
5

1
6

1
3 2 3 1

3. Use the following data set to construct fuzzy sets. Assume that the x values are
in the range 0− 10 and that the y values are in the unit interval.

〈9, .21〉 , 〈2, .5〉 , 〈10, 0.01〉 , 〈6, .66〉 , 〈8, .44〉 , 〈0, 0.1〉 , 〈7, .55〉 , 〈1, .15〉 , 〈3, .6〉 , 〈4, .8〉 , 〈5, 1〉.

4. Subjectively construct fuzzy sets that represent how you personally perceive
age. Construct fuzzy sets for the four linguistic terms of Ch. (16), young, old,
infant, adolescent that represents your own opinion.

For the following questions, assume that we have given the question sheet in
Fig. ?? to a group of acquaintances and tabulated the data.

5. Use the answer to questions 1-8 of the Questionnaire ?? as a data set to con-
struct a fuzzy set young. What operator very seems to produce very young from
young?

6. Use the answer to the questions 9-20 that represent vertical data to construct
fuzzy sets for the four linguistic terms of Ch. (16) young, old, infant, adolescent.
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7. How do the results of Question 4. compare with the results in the previous
question.

8. Use the answer to the questions 9-20 that represent horizontal data to construct
fuzzy sets for the four linguistic terms of Ch. (16) young, old, infant, adolescent.

9. How do the results of Question 4 compare with the results in the previous ques-
tion.

10. Construct a Questionnaire to gather data about the perception of height. What
linguistic terms would you use to categorize human height. Administer the Ques-
tionnaire and build fuzzy sets from the resulting data.
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10.1. Introduction

The modern world is awash in data. This is one of the consequences of the computer
revolution. The computer allows for the collection and storage of vast amounts of
data. It is becoming apparent that we have more data than understanding.

This chapter focuses on clustering and will present two algorithms used to cluster
data. Another clustering method is presented online in the Neural Network Chapter
http://duck.creighton.edu/Fuzzy/.

Clustering is the unsupervised classification of patterns (observations, data
items, or feature vectors) into groups (clusters). The clustering problem
has been addressed in many contexts and by researchers in many disci-
plines; this reflects its broad appeal and usefulness as one of the steps in
exploratory data analysis. However, clustering is a difficult problem combi-
natorially, and differences in assumptions and contexts in different commu-
nities has made the transfer of useful generic concepts and methodologies
slow to occur. — Jain et al. (1999).

10.2. Clustering

Suppose a company obtains an aerial photograph of a geographic area being farmed
by one of its subdivisions. It wants to analyze this photograph to determine what
part of the plot represents corn, what part represents soybeans, and what part of the
image has no crops at all. It would also like some data on what percent of the crop is
ripe so that an optimum harvest time can be determined.

This is the type of problem that clustering algorithms are used to solve. By cluster-
ing the data into a collection of clusters we hope that all the corn data will go into one
cluster, all the soybean data will go into a second cluster, and that the other objects
present, rocks, trees, grasses, etc. will be grouped into other clusters.

When we examine the cluster for corn, for example, we can also hope that the
shape of the cluster will allow the observer to infer something about the ripeness. A
tight cluster means all the corn is in the same state and if some are ripe all are ripe.
If the cluster is diffuse then it would indicate that different parts of the cultivation
area are in different states of ripeness.

Many other domains use clustering algorithms to extract information by grouping
a large collection of objects; such as the medical sciences (clustering of symptoms
yields information about the diseases), the earth sciences (to determine land use
patterns), and marketing research (to target advertisements and promotions towards
specific consumer groups that have a high probability of responding to them).
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Figure 10.1.: Ideal data seperated into two discrete optimal clusters A and B.

If the data is ideal, such as that pictures in figure (10.1) then there exists traditional
clustering methods, such as k–meansBandemer and Nather (1992) and ISODATABall
and Hall (1965), (Iterative Self-Organizing Data Analysis Technique), that will parti-
tion the data into two sets A and B that have no overlap. Both k–means and ISODATA
are popular self–organizing algorithms that seek to minimize the distance of the data
items to cluster prototypes (usually the center).

However, most data is not like the kind in figure (10.1). There are all kinds of
reasons for the data to be difficult to analyze. These problems include:

outliers data points that are inconsistently large or small,

bad data transcription or measurement error, and

inconsistent data information gathered over time may be dependant on an unmea-
sured parameter such as temperature.

The following sections will present the k–means clustering technique and the fuzzy
c–means algorithm.

10.3. k–means

Figure (10.2) is a scatter plot of a set of n ordered pairs or points xj = 〈xj1, xj2〉 with
j ∈ Nn. Clustering asks the question “Can we partition the set of n data points xi into
c subsets where each subset contains ‘similar’ points?”

A partition of a set is a collection of nonempty, disjoint subsets whose union is
the original set. If X = {a, b, c} then a partition into two subsets, c = 2, would be
S = {{b}, {a, c}} because {b}∩ {a, c} = ∅ and {b}∪ {a, c} = X. The pieces {b} and {a, c} are
called clusters.

Figure (10.3) is a scatter plot of three points

a = 〈1, 2〉 , (10.1)

b = 〈3, 5〉 , and

c = 〈2, 4〉 .
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Figure 10.2.: A scatter plot of 20 pairs of < x, y > values.

We want to partition the set X = {a, b, c} into two subsets of similar points. What does
it mean for two points to be similar? In this case let us define two points to be similar
if they are close in geometric distance. The closer the two points are to each other
the more similar they are to each other.

We can make a simple table that shows the classification of the three points. Let
C1 and C2 be cluster one and cluster two respectively. Then a three by two table can
represent the present classification of the three objects. For example Table (10.1)
presents the partition S = {{c}, {a, b}}. A 1 indicates that the point that heads that
column is in the cluster that heads that row. An 0 indicates the opposite, that the
point that heads that column is not in the cluster that heads that row.

Is the partition in table 10.1 a good partition? Is there another partition where the
degree of dissimilarity is less? It is possible to search exhaustively through every
possible partition of X = {a, b, c} but if we were dealing with Figure (10.2) then the
number of different partitions is one of those combinatorial problems that grows too
large too fast to be dealt with feasibly. We need a simpler and more efficient method
to deal with large data sets.

The algorithm k–means is the name of the method developed to iteratively cluster
a set of data points. Its methodology is fairly simple. The first step is to decide how
many clusters one wants the algorithm to generate. Right now we will assume that
we wish to cluster the data into two classes, C1 and C2. The second step is to randomly
assign the data points to clusters, making sure that no clusters is initially empty. This
means you have to go through a Table like Table (10.1) and put a 1 somewhere in
each column, filling in the rest of the column with 0s, and make sure that each row
also has at least one 1.

0S a b c
C1 0 0 1
C2 1 1 0

Table 10.1.: A partition of the data set X = {x, y, z} into two clusters C1 and C2.
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10. Fuzzy Clustering

Figure 10.3.: A scatter plot of the three points a, b, and c.

We are now finished with the initialization steps.
The third step is to find the central point geometrically of each cluster. It turns out

that this value is easy to find because it is simply the centroid, or center of gravity
(this value will also be important in Chapter 17 on fuzzy control). Let c1 be the center
of cluster C1 and let c2 be the center of cluster C2.

Step four is to go through the data points and calculate the distance of each point to
the centroids c1 and c2. If a point is closer to the centroid of a cluster it is not in than
it is to the centroid of the cluster it is in it has been incorrectly classified and should
be shifted from its original cluster to the new cluster whose centroid it is nearer. This
is step five where we reclassify the data points to produce a new partition.

Table (10.2) shows the centroids of the various clusters and the distances of the
various points to the centroids of the two clusters. In this table i is the cluster number,
ci is the clusters center and δ(a, ci) is the distance from the center to the data point a
and the numerical values for a, b, and c are given in Eq. (10.1).

i Cluster centroid ci δ(a, ci) δ(b, ci) δ(c, ci)
1 C1 = {c} c1 = 〈2, 4〉 2.236 1.414 0.000
2 C2 = {a, b} c2 = 〈2, 3.5〉 1.803 1.803 0.500

Table 10.2.: Distances of the data points {x, y, z} to the centroids of the cluster centers
c1 and c2.

Let us examine the meaning of Tables (10.1) and (10.2). From Table (10.1) we see
that point a is in cluster C2 and from Table (10.2) it is apparent that a is closer to the
center of C2 than it is to the center of cluster C1, i.e.,

δ(a, c2) = 1.803 < δ(a, c1) = 2.236.

The same is not true for point b. If we examine the numerical distances δ(b, c1) = 1.414
and δ(b, c2) = 1.803 we see that point b is mis-classified. It is presently classified in C2

but in fact it is in fact closer to the center of cluster C1. It is mis–classified. Point
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10.3. k–means

b should be reclassified into cluster C1. Finally point c is correctly classified, it is
closest (distance zero) from the center of its cluster C1. If we reclassify b we get the
Table (10.3).

1S a b c
C1 0 1 1
C2 1 0 0

Table 10.3.: A partition of the data set X = {x, y, z} into two clusters C1 and C2.

We now loop. Reiterate the steps three through five, which consist of; (3) calculat-
ing the centroid, (4) determining the distances from point to centroid and then (5)
reclassifying the data points. Loop until

1. a) no points have changed classification, or

b) some predefined limit on the number of iterations has been exceeded.

10.3.1. The k–means algorithm

To try to make the algorithm a little clearer we state that:

• There are c clusters C and the index i is used to indicate a specific cluster. Each
cluster has a prototype value ci, typically the centroid..

• There are n data points x and the index j is used to indicate a specific point.

• The data is q dimensional and the index k is used to indicate a specific dimension.

• The current iteration number is t and the current partition matrix (solution) is
tS.

• The algorithm loops until the current partition matrix tS is identical to the pre-
vious partition matrix t−1S or until tmax iterations have been performed.

The complete algorithm, to classify n points into c classes is:

1. Randomly assign the n points to the c classes making sure that each cluster
contains at least one data point. It is easiest to think of the result as a matrix
0Scn with c rows and n columns with 0si j being the value in the ith row and the
jth column of the matrix 0Scn. The value 0si j must be zero or one so we know
that 0si j ≥ 0. If 0sij is one then we interpret this as saying data point j is in
cluster i. We require that each column in the initial matrix have only a single 1
in it, a requirement which can be expressed by the constraint

c∑
i=1

0si j = 1 for all 1 ≤ j ≤ n.

Additionally, it is required that each cluster be non–empty so that values of si j
for each row must sum to be greater than or equal to one, i.e.,

n∑
j=1

0si j ≥ 1 for all 1 ≤ i ≤ c.
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10. Fuzzy Clustering

Finally set t the iteration counter to one, t = 1.

2. Calculate tci the centroid of cluster tCi by calculating the center of gravity in
each of its dimensions. We have used two dimensions in our example but there
is no difficulty in generalizing to q dimensions. For 1 ≤ k ≤ q

tci k =

∑n
j=1

t−1si j xjk∑n
j=1

t−1si j
.

and the entire centroid tci is the ordered q–tuple 〈tci1, tci2, ..., tciq〉

3. For each centroid tci calculate the distance of each data point to the centroid
of the various cluster. Typically the distance is the euclidean distance from the
data point xj to centroid ci

δi j = δ(tci, xj) =

√√√√ q∑
k=1

(tci k − xj k)
2

4. Create a new tableau tSn c with si j = 1 if and only if the jth cluster center is
the closest center to the data point i. That is, if δi j ≤ δi j′ for all 1 ≤ j′ ≤ c then
sij = 1 otherwise sij = 0. In other words classify x in the cluster with the nearest
centroid. If two centroids are equally close put it in the emptier cluster. If all
nearest clusters are equally empty choose one at random. Make sure that all
cluster are non-empty. If any cluster is empty put in the nearest data value in
terms of distance. In reality this is not a problem since the central points should
be closer to their own centroid than they are to any other clusters centroid.
Finally set t = t+ 1. (We also note that in this algorithm we can actually use the
square of the distance δ2i j =

∑q
k=1 (tci k − xj k)

2 in both Steps 3 and 4 which will
speed up the execution of the algorithm.)

5. Repeat steps 2-4 until a no data changes clusters or until a fixed number of
iterations is exceeded.

If we were to write a computer program to accomplish this task we would use the
algorithm that follows. For this purpose we note that in the program we need only
keep track of the current classification matrix currentPartition and the previous clas-
sification matrix previousPartition. This produces Algorithm (10.1).

The ISODATA algorithm is essentially the k–means algorithm with some further re-
finements for the splitting and merging of clusters. Three parameters are required
for ISODATA, two splitting parameter ss for size and sd for distance and one merging
parameter σ0 for spread. Clusters are merged when they are small or they are close.
This occurs when either the number of members in a cluster is less than the thresh-
old value ss, or if the centers of two clusters are closer than a certain threshold sd.
Clusters are split into two different clusters if they are large and spread out. This
occurs when the cluster standard deviation exceeds a predefined value σ0 and the
number of members is twice the threshold for the minimum number of members ss.
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Figure 10.4.: Three citrus fruits.

10.4. Problems with k–means

The major problem associated with k–means is one that is common to many of the
problems examined in this book. Suppose we have three points a = 〈1, 1〉, b = 〈2, 2〉
and c = 〈3, 3〉 and we want to produce two cluster. A casual inspection will show that
point b is equidistant from points a and c. Which class should b belong to? k–means
is one of those Aristotelian, Boolean, yes-no, 0–1 mechanisms. It must classify b in
either C1 or C2 and b obviously has the same distance to a as it has to c. To partition
the data into the sets {a, c} and {b} is nonsensical; certainly b is closer to either a or
c than a is to c. The Algorithm (10.1) will eventually terminate, once it puts b into a
cluster with a or c the program will stop. If we run the program again we can get
a different answer, in fact, repeated runs should cluster a and b fifty percent of the
time and cluster b and c the other fifty percent. This result would seem to indicate
the methodology is not sure where to place b, and if the algorithm is not sure, why
should we be! If, however, we allow the partial placement of b with both a and c we
have a fuzzy situation.

This is not an artificial situation. Consider the three citrus fruits in figure 10.4. If
we have to put A, B, and C into two bins and not leave a bin empty we must group
two of these fruits together. Now A and C are both round but they are very different
in size and color. If we put A and B together or B and C together that would seem
more reasonable. However A is a grapefruit, B is a tangelo, and C is a tangerine. The
tangelo is a crossbreed of a tangerine and a grapefruit. It is therefore exactly 50%
tangerine and 50%grapefruit.

A second problem with k–means (and for that matter many clustering algorithms)
is in dealing with outliers. An outlier is a data item that does not seem to fit the data
set. A sixty-six foot tall human being would be an outlier. We would be suspicious
that the data entry procedure involved a stuck key and that this is supposed to be a
six foot tall human being. However, if we have no way of verifying that the outlier is
indeed inaccurate then the outlier tends to throw off the accuracy of the clustering.

When both of these problems are taken into account k–means can be adapted into
Keller’s [1981] fuzzy c–means algorithm.
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10. Fuzzy Clustering

10.5. Fuzzy c-means

With a background in fuzzy set theory we can see immediately that if we replace
Aristotelian reasoning with Zadehian reasoning, that there is no reason not to classify
b as somewhat similar to both a and c. To put it another way k–means requires the
classification index si j of the membership of data item xj in cluster Ci to be zero or
one. Let us relax this requirement so that it is allowed that 0 ≤ si j ≤ 1 and keep
everything else in the k–means algorithm as identical to the original method as is
feasible. There are only two other significant change in the algorithm. The nonempty
requirement for a fuzzy set is not as stringent as for a crisp set. A crisp set is not
empty if it contains at least one element. A fuzzy set is not empty if it contains
any element to any non-zero degree. The second difference between fuzzy c–means
and k–means is the introduction of a weighing parameter m the allows fuzzy c-means
to deal with outliers successfully. Fuzzy k–means, also called fuzzy c-means,Bezdek
(1981) is a fast and robust clustering algorithm.

10.5.1. The Fuzzy k–means algorithm

Let us restate the conventions of k–means.

• There are c clusters C and the index i is used to indicate a specific cluster. Each
cluster has a prototype value ci.

• There are n data points x and the index j is used to indicate a specific point.

• The data is q dimensional and the index k is used to indicate a specific dimension.

• The current iteration number is t and the current partition matrix (solution) is
tS.

The complete fuzzy k–means algorithm, to classify n points into c classes is:

1. Randomly assign the n points to the c classes making sure that each cluster
contains at least one data point. The result is a matrix 0Scn with c rows and n
columns with 0si j being the value in the ith row and the jth column of the matrix
0Scn. The initial value of 0si j is still zero or one, but throughout the duration
of the algorithm we constrain 0si j to be in the unit interval 0si j ∈ [0, 1]. The
interpretation of 0si j is the degree of membership of data point j in cluster i. We
will still require that each column sum to one, but as the algorithm iterates the
values of 0si j will move through the unit interval, i.e., become fuzzy membership
grades. We still have the constraint

c∑
i=1

0si j = 1 for all 1 ≤ j ≤ n.

And we also require that each cluster be non–empty so that values of si j for each
row must be greater than zero, i.e.,

n∑
j=1

0si j > 0 for all 1 ≤ i ≤ c.
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10.5. Fuzzy c-means

Figure 10.5.: An example of a data set that a regular k-means program would find
hard to cluster. The point 〈3, 2〉 has some degree of membership in both
the left and right cluster.

Finally set the iteration counter t to one, t = 1.

2. Calculate tci the weighted centroid of cluster tCi by calculating the center of
gravity in each of its dimensions. However a weighing parameter m is intro-
duced that helps controls noise (outliers and bad values) in the data. We have
used two dimensions in our example but there is no difficulty in generalizing to
q dimensions. For 1 ≤ k ≤ q

tcik =

∑n
j=1

t−1smi j xjk∑n
j=1

t−1smi j

and the entire centroid ci is the ordered q–tuple 〈tci1, tci2, ..., tciq〉.

3. For each centroid tci calculate the similarity to the data points xj. The formula
with similarity measured by euclidean distance from the data point xj to centroid
tci is:

δi j = δ(ci, xj) =

√√√√ q∑
k=1

(tcik − xjk)
2

4. Create a new tableau tScn with

tsi j =
1∑c

l=1

(
δ2i j
δ2lj

) 1
m−1
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10. Fuzzy Clustering

unless δi j = 0 for some i j. If δi j′ = 0 for some j′ then set tsi j′ = 1 and set tsi j = 0
for all j 6= j′. In other words classify xj in the cluster tCi with membership degree
tsi j so that xj belongs to various clusters to varying degrees, but also so that xj
has stronger membership in clusters that it is closer to. Then set t = t+ 1.

5. Calculate the distance ∆tS, between t−1S and tS. Either the Hamming distance
or the Euclidean distance is acceptable here.

∆tS = ∆
(
t−1S,t S

)
=

c∑
i=1

n∑
j=1

∥∥t−1si j − tsi j
∥∥ .

If ∆tS is less than some stopping distance HALT, else repeat Steps 3-5 until ∆tS
becomes acceptable or until a t exceeds some fixed number of iterations.

The parameter m is an exponential weighing that reduces the effect of noise. It
ensures that close points have a greater effect upon the center of gravity and subse-
quent membership grades in the clusters than distant points with small but signifi-
cant membership grades.

The butterfly data that produces Fig. (10.5) looks like:

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15
x1 0 0 0 1 1 1 2 3 4 5 5 5 6 6 6
x2 0 2 4 1 2 3 2 2 2 1 2 3 0 2 4

Table 10.4.: The Butterfly data set..

When we run the crisp k–means algorithm on this data we get the following mem-
bership distribution. Note that b8 which is in the middle of the data ends up in cluster
C2.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15
C1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
C2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Table 10.5.: A partition of the Butterfly data set two fuzzy clusters C1 and C2 when
m=2.0.

When we run the fuzzy k–means algorithm on this data with m = 1.5 we get the
following table of membership grades as the final result.

10.6. Comments on clustering algorithms

The algorithms for k–means and fuzzy c–means clustering are presented in this chap-
ter. Jain [1999] is a good overview of the various clustering algorithms, their strengths,
and their weaknesses. For example, rate of convergence is very important for large
data sets. For very large data sets an algorithm that gives good clusters fast may
be preferable to an algorithm that gives more precise results but at a much later
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b1 b2 b3 b4 b5
C1 0.145 0.036 0.145 0.055 0.000
C2 0.855 0.964 0.855 0.945 1.000

b6 b7 b8 b9 b10
C1 0.055 0.103 0.500 0.897 0.945
C2 0.945 0.897 0.500 0.103 0.055

b11 b12 b13 b14 b15
C1 1.000 0.855 0.855 0.964 0.855
C2 0.000 0.055 0.145 0.036 0.145

Table 10.6.: A partition of the Butterfly data set two fuzzy clusters C1 and C2 when
m=21.5.

date. This would be true for a investment company that needed to make real time
decisions.

In both k–means and fuzzy c–means algorithms, a fixed number of clusters is spec-
ified before the data is processed. Variations of these, and other clustering algo-
rithms, might allow for the splitting of large diffuse clusters and/or the merging of
close sparsely populated clusters. An alternative approach to the problem of cluster
numbers is to put the algorithm inside an outer loop that increments the number
of clusters, c = 2, 3, ... , to find the best cluster size. For instance, we might judge
the overall goodness of a result for c clusters based on the average cluster variance.
The variance would be the average distance of every point in the cluster from the
centroid.

Another aspect of k–means and fuzzy c–means is that they cluster the data about
points. A natural variation would be to cluster the data about lines, circles or any
quadratic curve. An application area where this approach might be useful is image
processing where the discovery of lines in the image is called edge finding and is a
major task in image recognition.

10.7. Notes

The paper Jain et al. (1999) is an excellent overview of clustering algorithms. The
books Bezdek (1981), Kandel (1982), Bezdek and Pal (1992), Bezdek et al. (1999), and
Bandemer and Nather (1992) provide wonderful resources, especially bibliographies,
for further research in the area of pattern recognition.

10.8. Homework

Let us define the data sets
A = {〈0, 4〉 , 〈1, 3〉 , 〈2, 5〉} , (10.2)

B = {〈0, 4〉 , 〈0, 8〉 , 〈1, 5〉 , 〈1, 2〉 , 〈2, 1〉 , 〈2, 5〉 , 〈2, 6〉} , (10.3)
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and

C = {〈1, 0, 4〉 , 〈0, 2, 8〉 , 〈1, 9, 5〉 , 〈3, 1, 2〉 , 〈6, 2, 1〉 , 〈2, 5, 7〉 , 〈8, 2, 6〉 , 〈3, 6, 5〉} . (10.4)

1. Use k–means to cluster data set A by hand into two partitions.

2. Use k–means to cluster data set B by hand into two partitions.

3. Use k–means to cluster data set C into three partitions using a spreadsheet such
as EXCEL.

4. Use fuzzy c–means to cluster data set A by hand into two partitions with m = 2.0
and with m = 1.5. How do these results compare with the results of problem 1.

5. Use fuzzy c–means to cluster data set B into two partitions. Experiment with
different values of m. Graph the results. How do these results compare with the
results of problem 2.

6. Use fuzzy c–means to cluster data set C into three partitions using a spreadsheet
such as EXCEL. How do these results compare with the results of problem 3.

7. Write a program to process the butterfly data set.

8. How many clusters should we use for the data in Figure (10.2).

9. What is the result of clustering the data in Figure (10.2).

10. Gather data from your class about three preferences such as Favorite Day of the
Week, Favorite Cuisine, and Preferred Classtime:
Day Cuisine Time
Sunday 1
Monday 2
Tuesday 3
Wednesday 4
Thursday 5
Friday 6
Saturday 7

American 1
Chinese 2
Italian 3
Mexican 4
Other 5

Morning 1
Afternoon 2
Evening 3
Weekend 4

Thus a data item of W = 〈5, 2, 2〉 indicates that person W likes Thursday, Chinese
food, and Afternoon classes. Cluster the students in the class into two or three
clusters using k–means and fuzzy c–means. Explain and compare the results.

11. Explain several applications of clustering in the biological sciences.

12. Market data is the kind of information collected at grocery stores concerning
what customers buy. How can clustering techniques aid in understanding and
interpreting market data.
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Algorithm 10.1 k–means

Require: Initialization
c – the number of clusters
n – the number of data points
q – the dimension of the data points
tmax – the maximum number of iterations
Input the data matrix x
repeat

for i = 1 to c do
for j = 1 to n do
currentPartition[i, j]⇐ rand%2
{rand returns integer and % is modulus operator}

end for
end for

until
∑c
i=1 currentPartition[i, j] = 1 for all 1 ≤ j ≤ n and∑n

j=1 currentPartition[i, j] ≥ 1 for all 1 ≤ i ≤ c
repeat
previousPartition⇐ currentPartition
for i = 1 to c do

for k = 1 to q do
c[i, k]⇐

∑n
j=1 currentPartition[i,j] x[j,k]∑n

j=1 currentPartition[i,j]

end for
end for
for i = 1 to c do

for j = 1 to n do

δ[i, j]⇐
√∑q

k=1 (c[i, k]− x[j, k])
2

{Calculate distance from data point to centroid}
end for

end for
for i = 1 to c do
δmin[i]⇐ minci=1 δ[i, j]
for j = 1 to n do

if d[i, j] = δmin[i] then
currentPartition[i, j]⇐ 1

else
currentPartition[i, j]⇐ 0

end if
{Put each point in the closest partition}
{If two centroids are equally close put it in the emptier cluster}

end for
end for
{If a cluster is empty move in the nearest point}
t⇐ t+ 1.

until t = tmax or currentPartition = previosPartiton
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Algorithm 10.2 fuzzy c–means

Require: Initialization
c – the number of clusters m – the outlier weight parameter
n – the number of data points emax – the stopping distance
q – the dimension of the data points tmax – the maximum number of iterations

Input the data matrix x
repeat

for i = 1 to c do
for j = 1 to n do
currentPartition[i, j]⇐ rand mod 2
{rand returns a random integer and mod is the modulus operator}

end for
end for

until
∑c
i=1 currentPartition[i, j] = 1 for all 1 ≤ j ≤ n and∑n

j=1 currentPartition[i, j] ≥ 1 for all 1 ≤ i ≤ c
repeat
previousPartition⇐ currentPartition
for i = 1 to c do

for k = 1 to q do
c[i, k]⇐

∑n
j=1 (currentPartition[i,j] ˆm)∗x[j,k]∑n

j=1 (currentPartition[i,j] ˆm)

end for
end for
for i = 1 to c do

for j = 1 to n do

δ[i, j]⇐ δ(c[i], x[j])⇐
√∑q

k=1 (c[i, k]− x[j, k])
2

{Calculate distance from data point to centroid}
end for

end for
for i = 1 to c do

if d[i, j] 6= 0 then
for j = 1 to n do
currentPartition[i, j]⇐ 1∑c

l=1

(
δ2
i j

δ2
lj

) 1
m−1

end for
else

for j = 1 to n do
currentPartition[i, j]⇐ δ[i, j] = 0
{δ[i, j] = 0 is boolean expression}

end for
end if

end for
{If a cluster is empty move in the nearest point}
t⇐ t+ 1

e⇐
∑c
i=1

∑n
j=1

√
(currentPartition[i, j]− previousPartition[i, j])

2

until t = tmax or e < emax
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11. Rough Set Theory

11.1. Introduction

A recent addition to the mathematical frameworks that deals with uncertainty is
rough set theory Pawlak (1991, 2001). In Chapter 8 we noted that an equivalence
relation on set induces a partition of the set, and that a partition of a set can be
used to define an equivalence relation. The basis of rough set theory (RST) is a
an equivalence relation called indiscernability. Based upon this partition, rough ap-
proximations, both upper and lower, of an arbitrary subset of the universe U can be
formed. Rough set theory is heavily used in Knowledge Discovery in Databases, or
KDD. The basic concepts of RST are:

• Indiscernibility

• Set Approximation

• Reducts and Core

• Rough

• Membership Dependency of Attributes

• Information/Decision Systems (Tables)

According to Pawlak, rough sets are used to model vagueness. Vagueness is not al-
lowed in mathematics where everything is defined precisely and calculated exactly,
but vagueness is something computer scientists and philosophers deal with routinely.
Pawlak also remarks that rough set theory clearly distinguishes between two very
important concepts, vagueness and uncertainty, very often confused in the AI liter-
ature. Vagueness is the property of sets and can be described by approximations,
whereas uncertainty is the property of elements of a set and can expressed by the
rough membership function.

11.2. Basic definitions

Let R be any indiscernability (equivalence) relation on U and let x ⊆ U . Let [x]R be
the equivalence class of x under the relation R, thus [x]R = {y | xR y} . In rough set
theory these equivalence classes are also called granules. Often, in RST the granule
(equivalence class) of x ∈ U under the relation R is denoted R(x). We now define the
upper and lower approximations of a subset X ⊆ U determined by the granules of R.
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Figure 11.1.: A rough set.

Definition 58 (R–lower approximation). R∗X is the R-lower approximation of X and
is defined as

R∗X =
⋃

[x]R⊆X

[x]R

equivalently, we could use the definition

R∗X = {x | [x]R ⊆ X} .

Definition 59 (R–upper approximation). R∗X is the R-upper approximation of X and
is defined as

R∗X =
⋃

[x]R∩X 6=∅

[x]R

equivalently, we could use the definition

R∗X = {x | [x]R ∩X 6= ∅} .

The boundary region of X are those elements in the upper approximation that are
not in the lower approximation.

Definition 60 (R–boundary region). Those objects that we cannot decisively classify
into X via R are called the R–boundary region of X. It is denoted BNR(X) and,

BNRX = R∗X −R∗X
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Definition 61 (R–outside region). Those objects that are certainty classified as not
belonging to X make up the R–outside region of X. Mathematically the R–outside
region of X is equal to U −R∗X .

Example 75. Let U = {a, b, c, d, e, f} with aR e, bR dR f , and cR c. The equivalence
classes are [a]R = {a, e}, [b]R = {b, d, f}, and [c]R = {c}. Let X = {b, c} then R∗X = {c} and
R∗X = {b, c, d, f}. In addition, RNRX = {b, d, f}. The elements {a, e} form the R–outside
region of X.

Note that we always have the lower approximation of a set being contained in the
upper approximation of the same set, R∗X ⊆ R∗X , since a subset of X surely has
something (in fact everything) in common with X.

Here is a list of some of the most usefull properties of upper and lower aproxi-
mations. Upper and lower approximations are sets. To prove one set is a subset of
another we show that every element of the first set is in the second set. Thus A ⊆ B
if we can show that an arbitrary x ∈ A must also be in B. To prove A = B we show
two things; first we show A ⊆ B and then we show B ⊆ A. Since everything in A is in
B, and vice versa, A and B must be identical.

Upper and lower approximations possess the following properties:

I. R∗X ⊆ X ⊆ R∗X

II. R∗∅ = R∗∅ = ∅ and R∗U = R∗U = U

III. R∗ (X ∩ Y ) = R∗X ∩R∗Y

IV. R∗ (X ∪ Y ) ⊇ R∗X ∪R∗Y

V. R∗ (X ∪ Y ) = R∗X ∪R∗Y

VI. X ⊆ Y → R∗X ⊆ R∗Y and X ⊆ Y → R∗X ⊆ R∗Y

VII. R∗Xc = (R∗X)
c and R∗Xc = (R∗X)

c

VIII. R∗R∗X = R∗R∗X = R∗X

IX. R∗R∗X = R∗R
∗X = R∗X

As an illustration of thwew properties can be derived we now prove one of them as
an example of the techniques involved. We will proove the truth of #III..

Theorem 12. R∗ (X ∩ Y ) = R∗X ∩R∗Y

Proof. To prove two sets are equal you prove that each one is a subset of the other.
This means that any element of the univers is in both sets or neither, so the sets must
be identical. To prove that a set is a subset of another we show that every element of
the first set is required to be an element of the second.

(a) We will first show that R∗ (X ∩ Y ) ⊆ R∗X∩R∗Y . Suppose that x ∈ R∗ (X ∩ Y ). Then
by the definition of R–lower approximations, x must be in an equiavlence class R(x)
with R(x) ⊆ X ∩ Y . But if R(x) is contained in the intersection of A and B then it must
be contained in each one individually. Thus we have that both R(x) ⊆ A and R(x) ⊆ B.
But then, again by the definition of R–lower approximation, we have that R(x) ⊆ R∗A
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11. Rough Set Theory

Figure 11.2.: Rough membership grade.

and R(x) ⊆ R∗B. Taken together, the fact that both R(x) ⊆ R∗A and R(x) ⊆ R∗B means
that R(x) ⊆ R∗A∩R∗B and we conclude that x ∈ R∗A∩R∗B since, certainly, x is in R(x).

(b) Next we show that R∗ (X ∩ Y ) ⊇ R∗X ∩ R∗Y . Suppose that x ∈ R∗X ∩ R∗Y . Then
by the definition of intersection x must be in both R∗A and R∗B . By the definition
of R–lower approximations, x must be in an equiavlence class R(x) with R(x) ⊆ A and
R(x) ⊆ B, since the equivalence class of x is unique. From the fact that R(x) ⊆ A and
R(x) ⊆ B, we conclude R(x) ⊆ A∩B. If R(x) is contained in the intersection of A and B
then it is contained in the R–lower approximation of A∩B. Since x ∈ R(x) and R(X) ⊆
R∗ (X ∩ Y ) we have that x ∈ R∗ (X ∩ Y ) and we conclude that R∗ (X ∩ Y ) ⊇ R∗X ∩R∗Y .

From Parts (a) and (b) we conclude that the theorem is correct.

11.2.1. Rough Membership Function

An alternative way of defining RST uses a rough membership function . A rough set
membership function of x in X is the ratio of the number of elements indiscernable
from x that are in X to the total number of elements indiscernable from x. Thus
µRX : U → [0, 1] where

µRX(x) =
|X ∩ [x]R|
|[x]R|

(11.1)

The rough membership function can be thought of as the conditonal probability that
x belongs to X given the information about x provided by R.

The meaning of rough membership function can be depicted as shown in Fig. 2.
While we have already defined upper an lower approximations of a set X in RST

we now repeat this using the rough membership function can be used to define ap-
proximations and the boundary region of a set, as shown below:
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11.2. Basic definitions

R∗X =
{
x ∈ U | µRX(x) = 1

}
R∗X =

{
x ∈ U | µRX(x) > 0

}
RNRX =

{
x ∈ U | 0 < µRX(x) < 1

}
It is fairly easy to show that the rough membership function has the following

properties.

i. µRX(x) = 1 iff x ∈ R∗X

ii. µRX(x) = 0 iff x ∈ U −R∗X

iii. 0 < µRX(x) < 1 iff x ∈ RNRX

iv. µRU−X(x) = 1− µRX(x) for any x ∈ U

v. µRX∪Y (x) ≥ max
(
µRX(x), µRY (x)

)
for any x ∈ U

vi. µRX∩Y (x) ≤ min
(
µRX(x), µRY (x)

)
for any x ∈ U

Example 76. Let U = {a, b, c, d, e, f} with aR e, bR dR f , and cR c. The equivalence
classes are [a]R = {a, e}, [b]R = {b, d, f}, and [c]R = {c}. Let X = {b, c}, then the member-
ship function µRX(x) is:

x µRX(x)

a 0
b 1

3

c 1
d 1

3

e 0
f 1

3

whence we R∗X = {c} and R∗X = {b, c, d, f}. In addition, RNRX = {b, d, f}.

From the above properties it follows that the rough membership differs fundamen-
tally from the fuzzy membership. Properties v. and vi. indicate that the rough mem-
bership grade for x in a union or intersection of sets cannot always be computed from
the membership grade of x in the individual sets. This is in stark contrast with fuzzy
set theory. In general the rough membership function has characteristics that echo
probability theory.

Now we can give two equivalent definitions of rough sets.

Definition 62. Set X is rough with respect to R if R∗X 6= R∗X .

Definition 63. Set X rough with respect to R if for some x, 0 < µRX(x) < 1.

1
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11. Rough Set Theory

Age Lesions

x1 16-30 50+
x2 16-30 0
x3 30-40 1-25
x4 30-40 1-25
x5 40-50 26-49
x6 40-50 26-49
x7 16-30 26-49
x8 30-40 50+

Table 11.1.: The patents age groups and lesion counts.

Age Group Lesions Beamer’s Syndrome

x1 16-30 50+ yes
x2 16-30 0 no
x3 30-40 1-25 no
x4 30-40 1-25 no
x5 40-50 26-49 no
x6 40-50 26-49 yes
x7 16-30 26-49 no
x8 30-40 50+ yes

Table 11.2.: The presence of Beamer’s Syndrome by age group.

Information Systems

An Information System (IS) is a pair (U,A) where U is a non–empty set of objects and
A is set of attributes. Each individual attribute a maps U into a value set Va, so that
a : U → Va.

Example 77. Consider Table (11.1). Eight patients are classified with two attributes,
Age Group and Number of Lesions observed. In the information system presented in
Table (11.1) U = {x1, x2, x3, x4, x5, x6, x7, x8} and A = {a1 = age, a2 = lesion}. The value set
of a1 contains the age ranges of the patients: Va1 = {16− 30, 30− 40, 40− 50} . The value
set of a2 contains the lesion counts of the patients: Va2 = {0, 1− 25, 26− 49, 50+} .

The same or indiscernible objects may be represented several times in an infor-
mation system, for example, unbeknownst to them, two different Doctors might see
the same patient, and that patients data might go into the database twice. This of-
ten happens when a name is misspelled. Some of the attributes may be superfluous,
since data gatherers gather data and hope that the data turns out to be useful in the
end.

Let IS = (U,A) be an information system, and let B be a set of attributes, so that
B ⊆ A. Then we say that two objects x, y ∈ U are indiscernible with respect to B if, for
ever attribute a ∈ B the value for x is equal to the value for y, that is ∀a∈Ba(x) = a(y).

1Pawlak and Skowron (1994) notes that the above definitions are not precisely equivalent.
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11.3. Decision Systems

The set of all indiscernible pairs with respect to B is called the B–indiscernability
relation.

INDIS(B) = {〈x, y〉 | ∀a ∈ B, a(x) = a(y)}

It is easy to show that indiscernability is an equivalence relation. The equivalence
class of x with respect to the B—indiscernability relation is INDIS(B) or, more simply,
[x]B. The set of all equivalence classes with respect to B is denoted U/INDIS(B) or,
more simply, U/B and

U/B = {[x]B | x ∈ U} .
Example 78. The IS in 11.1 has A = {Age, Lesion}. With respect to Age patients
x1, x2, and x7 are indiscernible, that is, they are classified in the same age group.
With respect to Age x1, x2, and x7 are equivalent, and thus in the same equivalence
class. The equivalence classes of indistinguishable Age are {x1, x2, x7}, {x3, x4, x8}, and
{x5, x6} .

IND{Age} = {{x1, x2, x7} , {x3, x4, x8} , {x5, x6}} .
Example 79. Let B = {Age, Lesion} then the indiscernible groups are:

IND{Age,Lesion} = {{x1} , {x2} , {x3, x4} , {x5, x6} , {x7} , {x8}} .

11.3. Decision Systems

A decision system, DS, is a triple DS = (U,C,D) where U is again a universal set and
C and D are disjoint non–empty attribute sets. The set C is called the condition set,
D is called the decision set, with B = C ∪D and C ∩D = ∅.
Example 80. A DS with a single decision attribute d is illustrated in Table 11.2. The
decision set is D = {Beamer} and the value set of d = Beamer is just yes–no; yes if the
patient has been diagnosed with Beamer’s Syndrome and no otherwise: Vd = {yes, no}.

All the definitions of the previous section generalize from an IS to a DS when the
attribute set is disjoint collection of conditional attributes and decision attributes,
B ⊆ C ∪D. Usually we focus on B being a subset of the decision set and hope that we
learn the conditions that allow for a decision.

Example 81. The equivalence classes of B = {Age} are {x1, x2, x7}, {x3, x4, x8}, and
{x5, x6}. Let X = {x4, x5, x6, x7} then only the equivalence class {x5, x6} is contained in
X. Thus the B–lower approximation of X is BX = {x5, x6} . On the other hand, all of
the equivalence classes induced by B contain at least one element in common with X
so that the B–upper approximation ofX is everything, B̄X = U = {x1, x2, x3, x4, x5, x6, x7, x8}.
Example 82. Let B = A in the decision system illustrated in Table (11.2). In this case
IND{Age,Lesion} = {{x1} , {x2} , {x3, x4} , {x5, x6} , {x7} , {x8}}. Let Y = {x | Beamer(x) = yes},
then Y = {x1, x6, x8}. Now then AY = {x1, x8} and ĀY = {x1, x5, x6, x8}, BNB(Y ) =
{x1, x5, x6, x8} − {x1, x8} = {x5, x6} and the outside region of Y is {x2, x3, x4, x7}. We
conclude that Y is rough with respect to the conditions A.

What we have shown in the examples is that Age and Lesions are not sufficient
to precisely classify Beamer’s Syndrome. The outside region are those patients who
do not have the disease. The lower approximation are those that surely have the
disease. The boundary region consists of those patients who may have the disease.
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11. Rough Set Theory

Figure 11.3.: Rough set W .

U Cough Temp Bronchitis

u1 Yes Normal No
u2 Yes High Yes
u3 Yes Very-high Yes
u4 No Normal No
u5 No High No
u6 No Very-high Yes
u7 No High Yes
u8 No Very-high No

Table 11.3.: The flu.

11.4. Partitions, Covers and Rough Sets

Suppose we start with a decision system S = (U,C,D) . When we take a value x
from the universe, such as a patient from the clinic, we derive a pair of sequences,
one of condition values, and one of decision values. Suppose there are n condition
attributes {c1, . . . , cn} = C and m decision attributes {d1, . . . , dm} = D. Then every x ∈ U
determines a sequence of conditions c1(x), . . . , cn(x); and decisions d1(x), . . . , dm(x).

Another way to view this is to consider each sequence pair as a decision rule in-
duced by x. We will denote the decision rule induced by x in S as

c1(x), . . . , cn(x)→ d1(x), . . . , dm(x) (11.2)

or simply
C →x D . (11.3)

Usually, identical decision rules are produced by many elements of the universe. We
count all these elements as the support of the decision rule.

Definition 64 (support). The support of a decision rule is the number of occurrences
of C →x D as u ranges over U :

suppx(C,D) = |{u ∈ U | C →x D = C →u D}| . (11.4)
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11.4. Partitions, Covers and Rough Sets

Segment In Out Change Churn N

1 medium medium low no 200
2 high high low no 100
3 low low low no 300
4 low low high yes 150
5 medium medium low yes 220
6 medium low low yes 30

Table 11.4.: Client segments

Mathematically, the condition and decision attribute sets are disjoint and make up
all the attributes under consideration. Since A = C ∪D and ∅ = C ∩D each n+m–tuple

〈c1(x), . . . , cn(x), d1(x), . . . , dm(x)〉 (11.5)

is identical to the n+m–tuple

a(x) = 〈a1(x), . . . , an+m(x)〉 . (11.6)

We now provide a shorthand notation for the support by considering the equiva-
lence class of x induced by the attributes A, traditionally [x]A but also denoted in RST
as A(x). First we note that if [x]C = C(x) and [x]D = D(x) then A(x) = C(x) ∩D(x) and

suppx(C,D) = |A(x)| (11.7)

= |C(x) ∩D(x)| .

Definition 65 (strength). The strength of the decision rule induced by x is the sup-
port divided by the cardinality of U

σx(C,D) =
suppx(C,D)

|U |
(11.8)

=
|C(x) ∩D(x)|

|U |
.

Definition 66 (certainty). The certainty of the decision rule induced by x is the
support divided by the cardinality of conditional equivalence class of x

cerx(C,D) =
suppx(C,D)

|C(x)|
(11.9)

=
|C(x) ∩D(x)|
|C(x)|

.

If cerx(C,D) = 1, then C →x D will be called a certain decision rule. If 0 < cerx(C,D) <
1 the decision rule will be referred to as an uncertain decision rule.

Definition 67 (coverage factor). The coverage factor of the decision rule, denoted
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11. Rough Set Theory

H = {1, 2, 3} H ′ = {4, 5, 6}
C {2, 3} {4, 6}
C {1, 2, 3, 5} {1, 4, 5, 6}

BND {1, 5} {1, 5}

Table 11.5.: Upper an Lower Churn Approximations

Decision rule Strength Certainty Coverage

1 0.20 0.48 0.33
2 0.10 1.00 0.17
3 0.30 1.00 0.50
4 0.15 1.00 0.38
5 0.22 0.52 0.55
6 0.03 1.00 0.07

Table 11.6.: Parameters of the decision rules

covx(C,D) is defined as;

covx(C,D) =
suppx(C,D)

|D(x)|
(11.10)

=
|C(x) ∩D(x)|
|D(x)|

.

Definition 68. Also useful is the probability of the decision equivalence classes,
πx(D) = |D(x)|

|U | .

It is easy to see from the formulas that the coverage factor is the ratio of the
strength to the probability, or covx(C,D) = σx(C,D)

πx(D) . It is only a slight abuse of notation
(shared with probability theory) to express covx(C,D) = πx(C | D).

If C →x D is a decision rule then D →x C will be called an inverse decision rule. The
inverse decision rules can be used to give explanations (reasons) for a decision.

Let us observe that if C →x D is a decision rule then⋃
y∈D(x)

{C(y) | C(y) ⊆ D(x)} (11.11)

is the lower approximation of the decision class D(x), by condition classes C(y),
whereas the set ⋃

y∈D(x)

{C(y) | C(y) ∩D(x) 6= ∅} (11.12)

is the upper approximation of the decision class by condition classes C(y).
Approximations and decision rules are two different methods to express properties

of data. Approximations suit better to express topological properties of data, whereas
decision rules describe in a simple way hidden patterns in data.
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11.4. Partitions, Covers and Rough Sets

Example 83 (J. Grant). Churn (from Grant (2001))
In telecommunications, Churn refers to customers switching service providers. Table
(11.4) shows a summary of 1000 clients. The attributes under consideration are:

In incoming calls,

Out outgoing calls within the same operator,

Change outgoing calls to other mobile operator,

Churn the decision attribute describing the consequence,

N the number of similar cases.

Each row in Table (11.4) corresponds to a decision rule. For example, Row 2 deter-
mines the following decision rule: “if the number of incoming calls is high and the
number of outgoing calls is high and the number of outgoing calls to the mobile op-
erator is low then these is no churn”. The N column says that 100 out 1000 clients in
the database exhibit this behavior.

One of the main problem that have to be solved by marketing depart-
ments of wireless operators is to find the way of convincing current clients
that they continue to use the services. In solving this problems can help
churn modeling. Churn model in telecommunications industry predicts
customers who are going to leave the current operator. – J. Grant, “Churn
modeling by rough set approach”, manuscript, 2001.

The marketing department wants to understand why some clients Churn, Segments
{1, 2, 3}, while others don’t, Segments {4, 5, 6}. Note that clients in Segments 1 and
5 have identical condition attributes, but make different decisions. Thus the data is
inconsistent and the problem is indeterminate.

With respect to the condition attributes, In, Out, and Change we have the following
upper and lower approximations of H = {1, 2, 3}, the Churn set, and H ′ = {4, 5, 6}, the
not–Churn set.

Segments 2 and 3 can be classified as clients who certainly do not Churn and
Segments 4 and 6 can be classified as the clients who do Churn. Segments 1 and 5
are the boundary region, their behavior is undecidable.

Table (11.6) shows the strength, certainty, and coverage determined from Table
(11.4).

Decision algorithm
Any decision table induces a set of “if ... then” decision rules. Any set of mutually,
exclusive and exhaustive decision rules, that covers all facts in S and preserves the
Indiscernability relation included by S will be called a decision algorithm in S. An
example of decision algorithm derived from the decision Table (11.4) is given below:

1. if (In, high) then (Churn, no) with cer = 1.00

2. if (In, low) and (Change, low) then (Churn, no) with cer = 1.00

3. if (In, med.) and (Out, med.) then (Churn, no) with cer = 0.48
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Figure 11.4.: A conflict graph.

4. if (Change, high) then (Churn, yes) with cer = 1.00

5. if (In, med.) and (Out, low) then (Churn, yes) with cer = 1.00

6. if (In, med.) and (Out, med.) then (Churn, yes) with cer = 0.52

Another interesting, but very complex problem, is finding a minimal decision algo-
rithm associated for a decision table. For example, maybe we do not need to use
Change to adequately explain Churn. This turns out to be a very complex problem,
with many proposals as to the best method of solution.

If we swap Conditions and Decision attributes we get explanatory rules. Here we
list the explanatory rules (or inverse decision rules) derived from Table (11.4), along
with their certainty factors.

1. if (Churn, no) then (In, high) and (Out, med.) with cer = 0.33

2. if (Churn, no) then (In, high) with cer = 0.17

3. if (Churn, no) then (In, low) and (Change, low) with cer = 0.50

4. if (Churn, yes) then (Change, yes) with cer = 0.38

5. if (Churn, yes) then (In, med.) and (Out, med.) with cer = 0.55

6. if (Churn, yes) then (In, med.) and (Out, low) with cer = 0.07

We note that that certainty factor for inverse decision rules are coverage factors
for the original decision rules.

Let us summarize what the data is telling us about Churn. We conclude:

• No churn is implied with certainty by:

– high number of incoming calls,

– low number of incoming calls and low number of outgoing calls to other
mobile operator.

• Churn is implied with certainty by:

– high number of outgoing calls to other mobile operator,
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11.4. Partitions, Covers and Rough Sets

(a) Flow graph

(b) Flow graph with dependencies.

Figure 11.5.: Flow graphs with and without dependencies.
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Faction Party Vote Count

1 A + 200

2 A 0 30

3 A - 10

4 B + 15

5 B - 25

6 C 0 20

7 C - 40

8 D + 25

9 D 0 35

10 D - 100

Table 11.7.: A voting record

– medium number of incoming calls and low number of outgoing calls.

• Clients with medium number of incoming calls and low number of outgoing calls
within the same operator are undecided (no churn, cer = 0.48; churn, cer = 0.52).

From the inverse decision algorithm and the coverage factors we get the following
explanations:

• the most probable reason for no churn is low general activity of a client,

• the most probable reason for churn is medium number of incoming calls and
medium number of outgoing calls within the same operator.

11.5. Conflict Analysis

11.5.1. 1. Introduction

A.Nakamura (1999) showed how to apply RST concepts to conflict analysis. Conflict
analysis and resolution is an important area of study in many fields such as business,
political science, as well as in military operations. A student of any of these fields,
political science for example, could remark that there are many different models of
conflict using tools such as graph theory, Bayesian methods, differential equations,
and especially game theory. The lack of success of any field , Many formal mathemat-
ical models of conflict situations have been proposed and studied using tools such
as graph theory, topology, differential equations and game theory. The multitude of
models shows that there is, as yet, no universal theory of conflict.

We will use a voting example to show how rough sets can aid in the analysis of
conflict.
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Table 11.8.: Strength, certainty and coverage factors for Table (11.7).

Fact Strength Certainty Coverage

1 0.4 0.83 0.83

2 0.06 0.13 0.35

3 0.02 0.04 0.06

4 0.03 0.38 0.06

5 0.05 0.63 0.14

6 0.04 0.33 0.24

7 0.08 0.67 0.23

8 0.05 0.16 0.1

9 0.07 0.22 0.41

10 0.2 0.63 0.57

11.5.2. Basic concepts of conflict theory

Let U be a finite, non-empty set whose members will be referred to as agents. The
attribute function v (for vote) maps agents to the values:

-1 representing against,

0 representing abstain, and

+1 representing for.

Thus v : U → {−1, 0, 1}, or in short v : U → {−, 0,+}. The pair S = (U, v) will be called a
conflict situation. In order to express relations between agents we define three basic
binary relations between agents: conflict, neutrality and alliance. To this end we first
define the following auxiliary function:

φv(x, y) =


1 x = y

0 v(x)v(y) = 0 andx 6= y

−1 v(x)v(y) = −1

(11.13)

We interpret φv thusly:

φv(x, y) = 1 this means means agents x and y have the same opinion about issue v
(are allied on v),

φv(x, y) = 0 means that at exactly one agent x or y has a neutral approach to the
issue, and

φv(x, y) = −1 means that both agents have different opinions about issue v (are in
conflict on v).
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(a) Forward Approximate Flow Graph (b) Inverse Approximate Flow Graph

Figure 11.6.: Approximate flow graphs.

We now define three basic relations on U × U called alliance, R+
v , neutrality , R0

v, and
conflict, R−v , relations respectively. The definitions of alliance, neutrality, and conflict
relations are as follows:

R+
v (x, y) iff φv(x, y) = 1

R0
v(x, y) iff φv(x, y) = 0

R−v (x, y) iff φv(x, y) = −1

Since R+
v (x, y) iff φv(x, y) = 1 and φv(x, y) = 1 iff x = y it is obvious that alliance, R+

v (x, y)
is an equivalence relation, and thus verifies the following properties:

(i) R+
v (x, x) for all x ∈ U

(ii) R+
v (x, y) implies R+

v (y, x)

(iii) R+
v (x, y) and R+

v (y, z) imply R+
v (x, z).

The equivalence classes of alliance are called coalitions with respect to v. We see
that item ((iii)) says that “the friend of my friend is a friend.”

Since R−v (x, y) iff φv(x, y) = −1 and φv(x, y) = −1 iff v(x)v(y) = −1 it is obvious that
conflict, R+

v (x, y) is not an equivalence relation. However it does possess the following
properties:

(iv) not R−v (x, x) for all x ∈ U

(v) R0
v(x, y) implies R0

v(y, x)

(vi) R−v (x, y) and R−v (y, z) imply R+
v (x, z)
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(vii) R−v (x, y) and R+
v (y, z) imply R−v (x, z).

We see that item ((vii)) says that “the enemy of my freind is my enemy.”
Since R0

v(x, y) iff φv(x, y) = 0 and φv(x, y) = o iff v(x)v(y) = 0 andx 6= y it is obvious that
neutrality, R)

v(x, y) verifies the following properties:

(viii) not R0
v(x, x) for all x ∈ U

(ix) R0
v(x, y) implies R0

v(y, x)

(x) R+
v (x, y) and R+

v (y, z) imply R+
v (x, z).

Let us observe that in the conflict and neutrality relations there are no coalitions.
The following property holds:

R+
v (x, y) ∪R0

v(x, y) ∪R−v (x, y) = U2

because one of the three cases for φv must hold, that is, given an x and y one of the
three case in Eq. (11.13) must hold. If the values of v(x) and v(y) are equal, then the
first case, φv(x, y) = 1 is true and R+

v (x, y) holds so x and y agree. If v(x) is not equal to
v(y) then if exactly one is zero then the second case of Eq. (11.13) is true and R0

v(x, y)
holds so x and y are neutral to each other. Otherwise there is conflict as one of the
values of v(x) and v(y) are plus one and minus one, or the reverse, and the product is
certainly negative one so v(x)v(y) = −1 and R−v (x, y) holds.

With every conflict situation we will associate a conflict graph G.
An example of a conflict graph is shown in Fig. 11.4. In Fig. 11.4 solid lines are

denoting conflicts, doted line − alliance, and neutrality, for simplicity, is not shown
explicitly in the graph. Of course, B, C, and D form a coalition.

11.6. An example

In this section we will illustrate the above presented ideas by means of a very sim-
ple tutorial example using concepts presented in the previous. Table 1 presents a
decision table in which the only condition attribute is Party, whereas the decision
attribute is Voting. The table describes voting results in a parliament containing 500
members grouped in four political parties denoted A, B, C and D. Suppose the par-
liament discussed certain issue (e.g., membership of the country in European Union)
and the voting result is presented in column Voting, where +, 0 and − denoted yes,
abstention and no respectively. The column support contains the number of voters
for each option.

The strength, certainty and the coverage factors for Table 11.7 are given in Table
11.8.

From the certainty factors we can conclude, for example, that:

• 83.3% of party A voted yes,

• 12.5% of party A abstained,

• 4.2% of party A voted no.

189
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Figure 11.7.: Conflict graph associated with Figure 11.6.

From the coverage factors we can get, for example, the following explanation of
voting:

• 83.3% yes votes came from party A

• 6.3% yes votes came from party B

• 10.4% yes votes came from party C

The flow graph associated with Table 2 is shown in Fig. 2.
Branches of the flow graph represent decision rules together with their certainty

and coverage factors. For example, the decision rule A → 0 has the certainty and
coverage factors 0.125 and 0.353, respectively. The flow graph gives a clear insight
into the voting structure of all parties.

For many applications exact values of certainty of coverage factors of decision rules
are not necessary. To this end we introduce “approximate” decision rules, denoted
C ⇒ D and read “C mostly implies D”. C ⇒ D if and only if cer(C,D) > 0.5. Thus we
can replace flow graph shown in Fig. 11.5a by "approximate” flow graph presented
in Fig. 11.6a.

Fig. 11.6b is a flow graph contains all inverse decision rules with certainty factor
greater than 0.5. From this graph we can see that yes votes were obtained mostly
from party A and no votes − mostly from party D.

From the graph 11.6a we can see that parties B, C and D form a coalition, which is
in conflict with party A, i.e., every member of the coalition is in conflict with party A.
The corresponding conflict graph is shown in Fig. 11.4.

A useful metric for analysis of flow graphs is the dependency factor, η(x, y) , given
by:

η(x, y) =
cer(x, y)− σ(y)

cer(x, y) + σ(y)
.

Fig. 11.5b shows the dependency factor for the voting example.
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Homework

Given the data :
Height Weight Color

x1 5 200+ red
x2 5 100-150 red
x3 5 150-200 blue
x4 6 100-150 blue
x5 6 150-200 red
x6 5 100-150 blue
x7 5 200+ blue
x8 6 150-200 red

1. What is IND{Height}?

2. What is IND{Weight}?

3. What is IND{Height,Weight}?

4. What is IND{Color}?

5. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}. Let W = {x5, x6}. What is DW?

6. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}.Let W = {x5, x6}. What is DW?

7. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}.Let Y = {x | Height(x) = 4}. What is DY ?

8. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}.Let Y = {x | Height(x) = 4}. What is DY ?

9. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}.Let Z = {x |Weight(x) = 200+}. What is DZ?

10. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}.Let Z = {x |Weight(x) = 200+}. What is DZ?

11. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}. What is suppx(C,D) , σx(C,D), cerx(C,D) and covx(C,D) when x = x1?

12. Suppose the data represents a decision system with C = {Height,Weight} and
D = {color}. What is suppx(C,D) , σx(C,D), cerx(C,D) and covx(C,D) when x = x2?

Suppose we have the following decision system (where N represents a frequency):

Length Years Disease N

1 3 20 yes 50
2 5 10 yes 100
3 5 15 yes 200
4 4 10 no 100
5 3 15 yes 200
6 4 20 no 100
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13. Fill in the following table based on the above data:
Decision rule Strength Certainty Coverage

1
2
3
4
5
6

Suppose we have the following Voting Data

Faction Party Vote Count

1 A + 200

2 A 0 30

3 A - 60

4 B + 75

5 B - 25

6 B 0 20

7 C 0 40

8 C - 60

14. Give the above voting data, fill out the following table:

Faction Strength Certainty Coverage

1

2

3

4

5

6

7

8

15. Give the above voting data, create a flow graph.

192



12. Evidence Theory

12.1. Introduction

In classical mathematics measures are additive. If Ann brings in 5 pounds of apples
and Bob brings in 6 pounds of bananas we have 5 + 6 = 11 pounds of fruit.

Suppose on the other hand that Ann and Bob are witnesses to a crime. Take in-
dividually, their testimony would convince a juror that there is a 50% likelihood that
Carl is guilty. Yet taken together, their testimony will not convince a juror that Carl
is guilty without a doubt. That is because evidence, in general, is non–additive.

Th mathematics of non–additive measures is briefly explained in Section A.2 on
page 314 of the Appendices. For our purposes, the important characteristics of fuzzy
measures are that it assigns numbers to sets and that it is monotone. A fuzzy measure
g is monotone if A ⊆ B implies that g(A) ≤ g (B).

12.2. Evidence Theory

Evidence theory (ET) is one of the broadest frameworks for the representation of
uncertainty. Its origins lie in the works of Dempster (1967b,a) and Shafer (1976) are
heavily influenced by probability theory, one of the oldest uncertainty frameworks.
Evidence theory is especially important because it is a kind of Swiss army knife in
the field of uncertainty. ET encompasses belief, plausibility, necessity, possibility and
probability among a host of other measures. Here we present Evidence Theory as it
was originally characterized by Shafer.

Evidence theory is based on two fuzzy measures: belief measures and plausibility
measures. Belief and plausibility measures can be conveniently characterized by
a function m from the power set of the universal set X into the unit interval. In
this chapter we will assume at all times that X is finite. The function m, where
m : P(X)→ [0, 1] , is required to satisfy two conditions:

(1) m(∅) = 0 (12.1)

(2)
∑

A∈P(X)

m(A) = 1.

The function m is called a basic probability assignment (bpa). For each set A ∈
P(X), the value m(A) expresses the proportion to which all available and relevant
evidence supports the claim that a particular element of X belongs to the set A. This
value, m(A), pertains solely to one set, set A; it does not imply any additional claims
regarding subsets or supersets of A. If there is some additional evidence supporting
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the claim that the element belongs to a subset of A, say B ⊆ A, it must be expressed
by another value m(B).

Given a basic probability assignment, m, every set A ∈ P(X) for which m(A) 6= 0 is
called a focal element. The pair 〈F ,m〉, where F denotes the set of all focal elements
induced by m is called a body of evidence and we may denote it by B = 〈F ,m〉.

From a basic probability assignment m, the corresponding belief measure and plau-
sibility measure are determined for all sets A ∈ P(X) by the formulas

Bel(A) =
∑
B⊆A

m(B), (12.2)

and
Pl(A) =

∑
B∩A6=∅

m(B) (12.3)

Thus the belief in a set A is the sum of all the evidence (basic probability) assigned
to A or to any subset of A. On the other hand, the plausibility of A is the sum of all
the evidence (basic probability) that overlaps with A.

It can be shown that the plausibility of an event is one minus the belief of the
complement of that event, and vice verse. That is

Bel(A) = 1− Pl(Ac)

Pl(A) = 1− Bel(Ac)

Since we can calculate the belief from the plausibility, and the plausibility from the
belief, and both belief and plausibility can be derived from the basic probability as-
signment, we only need one more formula to show that all three measures provide
the same information.

Given a belief measure Bel, the corresponding basic probability assignment m is
determined for all A ∈ P(X) by the formula

m(A) =
∑
B⊆A

(−1)|A−B|Bel(B), (12.4)

where |A−B| is the cardinality of the set difference of A and B, as proven by Shafer
(1976). 1 Thus each of the three function, m, Bel and Pl, is sufficient to determine the
other two.

Total ignorance is expressed in evidence theory by m(X) = 1 and m(A) = 0 for all
A 6= X. Full certainty is expressed by m({x}) = 1 for one particular element of x and
m(A) = 0 for all A 6= {x}.

Example 84. As an example, let X = {x1, x2, x3} and let

1This book uses A\B for set difference, but this is the traditional presentation of the formulas of evidence
theory in most books and papers.
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m({x1, x2}) = 0.3 (12.5)

m({x3}) = 0.1

m({x2, x3}) = 0.2

m(X) = 0.4 .

be a given basic probability assignment on P(X). The focal set of this basic probability
assignment is the set

F = {{x1, x2}, {x3}, {x2, x3}, {x1, x2, x3}}; (12.6)

and we always assume that m(A) = 0 for all A /∈ F , that is, m is zero for any sets that
are not listed or mentioned.

Using the given basic probability assignment we can calculate the belief and plau-
sibility of any subset of X. For example, our belief in {x2, x3} is

Bel({x2, x3}) = m({x2, x3}) +m({x3}) (12.7)

= 0.2 + 0.1

= 0.3.

since {x2, x3} and {x3} are the only subsets of {x2, x3} in the focal set. The plausibility
of {x3} is

Pl({x3}) = m(X) +m({x2, x3}) +m({x3}) (12.8)

= 0.4 + 0.2 + 0.1

= 0.7,

since X, {x2, x3}, and {x3} are in the focal set and their intersection with {x3} is non-
empty.

Table 12.1 is complete listing of the basic probability assignment, belief, and plau-
sibility of all subsets of X for this example.

Two special cases of evidence are important.

12.2.1. Probability Theory

In the first special case, suppose that each element of the focal set has size one.
Thus each set Ai ∈ F contains a single element of the universe X. In this case, since
the sum of the weights of the focal elements is one, and each focal element element
contains one object from the universe. Define p : X → [0, 1] by

p(x) = m({x})

then p is always positive, and sums to one. Since we assume X is finite p is a prob-
ability distribution, and the belief, plausibility, and possibility of a subset A of X are
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Table 12.1.: An example of a basic probability assignment and the associated belief
and plausibility measures.

Set m Bel Pl

∅ 0.0 0.0 0.0
{x1} 0.0 0.0 0.7
{x2} 0.0 0.0 0.9
{x1, x2} 0.3 0.3 0.9
{x3} 0.1 0.1 0.7
{x1, x3} 0.0 0.1 1.0
{x2, x3} 0.2 0.3 1.0
X 0.4 1.0 1.0

all identical, Bel(A) = Pl(A) = P (A).

Example 85. Let us examine the following body of evidence defined onX = {x1, x2, x3}.
m ({x1}) = 0.3
m ({x2}) = 0.2
m ({x3}) = 0.5

The focal set is F = {{x1} , {x2} , {x3}}. We note that each focal object contains a
single element. Define

p1 = p(x1) = m ({x1}) = 0.3

p2 = p(x2) = m ({x2}) = 0.2

p3 = p(x3) = m ({x3}) = 0.5

and we claim that p is a probability distribution on X. It satisfies all the requirement
of a discrete probability distribution, all the probabilities are non–negative and the
probabilities sum to one. The following Table shows the bpa, belief, plausibility, and
probability of all the subsets of X.

Set m Bel Pl P

∅ 0 0 0 0
{x1} 0.3 0.3 0.3 0.3
{x2} 0.2 0.2 0.2 0.2
{x1, x2} 0 0.5 0.5 0.5
{x3} 0.5 0.5 0.5 0.5
{x1, x3} 0 0.8 0.8 0.8
{x2, x3} 0 0.7 0.7 0.7
X 0 1 1 1

12.2.2. Possibility Theory

In the second special case, assume that the elements of the focal set are consonant.
This means that there is an order of the focal sets such that each set is nested in its
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successors. That is, if Ai and Aj are elements of the focal set F then, if i < j then
Ai ⊂ Aj.

The special branch of evidence theory that deals only with bodies of evidence whose
focal elements are nested is referred to as possibility theory [Dubois and Prade,
1988]. Special counterparts of belief measures and plausibility measures in possi-
bility theory are called necessity measures and possibility measures, respectively.
Thus Pos(A) = Pl(A) and Nec(A) = Bel(A)

It is not hard to show that in the case of consonant focal sets that:

i. Nec(A ∩B) = min[Nec(A),Nec(B)] for all A,B ∈ P(X);

ii. Pos(A ∪B) = max[Pos(A),Pos(B)] for all A,B ∈ P(X).

Define
r(x) = max

x∈A
[Pos(A)]

then r is called a possibility distribution. We now that the values of r must be between
0 and 1 so that r:X → [0, 1]. It also turns out that

Pos(A) = max
x∈A

r(x) (12.9)

for each A ∈ P(X).

Example 86. Let us examine the following body of evidence defined onX = {x1, x2, x3}.
m ({x1}) = 0.3

m ({x1, x2}) = 0.2
m ({x1, x2, x3}) = 0.5

The focal set is F = {{x1} , {x1, x2} , {x1, x2, x3}}. We note that the focal object can be
ordered by containment, {x1} ⊆ {x1, x2} ⊆ {x1, x2, x3}. The following Table shows the
bpa, possibility, and necessity of all the subsets of X.

Set m Pos Nec

∅ 0 0 0
{x1} 0.3 0.3 1
{x2} 0 0.0 0.7
{x1, x2} 0.2 0.5 1
{x3} 0 0 0.5
{x1, x3} 0 0.3 1
{x2, x3} 0 0 0.7
X 0.5 1 1

Define a possibility distribution on X

r1 = r(x1) = max
x1∈A

[Pos(A)] = 0.3

r2 = r(x2) = max
x1∈A

[Pos(A)] = 0.5

r3 = r(x3) = max
x1∈A

[Pos(A)] = 1

then for each subset A of X we have that the possibility of A is just the largest
distributional value assigned to an element of A.
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12.2.2.1. Possibility Theory as Fuzzy Set Theory

The most visible interpretation of possibility theory, is connected with fuzzy sets. This
interpretation was introduced by Zadeh [1978].

To explain the fuzzy set interpretation of possibility theory, let X denote a variable
that takes values in a given set X, and let information about the actual value of the
variable be expressed by a fuzzy proposition “X is F”, where F is a standard fuzzy
subset of X (i.e., F (x) ∈ [0, 1] for all x ∈ X). To express information in measure-
theoretic terms, it is natural to interpret the membership degree F (x) for each x ∈ X
as the degree of possibility that X = x. This interpretation induces a possibility
distribution, rF , on X that is defined by the equation

rF (x) = F (x) (12.10)

for all x ∈ X. If F is normal then a fuzzy set is, in a sense, equivalent to a possibility
distribution.

Example 87. Let F be the normal fuzzy set X = {x1, x2, x3} defined by

F (x1) = 0.3

F (x1) = 0.5

F (x1) = 1.0

Define a possibility distribution rF on X

rF (x1) = 0.3

rF (x2) = 0.5

rF (x3) = 1 .

We note that the normal fuzzy set F , the possibility distribution rF and the possibility
distribution of Example 86 are all identical.

Homework

Let X = {x1, x2, x3} and let
m ({x1}) = 0.1
m ({x3}) = 0.3

m ({x1, x2}) = 0.4
m(X) = 0.2

m ({x1, x3}) = 0.2
m ({x2, x3}) = 0.3
m ({x1, x2}) = 0.4

m(X) = 0.1

m ({x1}) = 0.1
m ({x1, x2}) = 0.3

m(X) = 0.6

Body of Evidence 1 Body of Evidence 2 Body of Evidence 3

m ({x3}) = 0.1
m ({x2, x3}) = 0.4

m(X) = 0.2

m ({x1}) = 0.1
m ({x2}) = 0.3
m ({x3}) = 0.6

m ({x1}) = 0.7
m ({x2}) = 0.3

Body of Evidence 4 Body of Evidence 5 Body of Evidence 6

1. Given the bpa in Body of Evidence 1 what are the focal elements.
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2. Given the bpa in Body of Evidence 1 fill in the following Table:
Set m Bel Pl

∅
{x1}
{x2}
{x1, x2}
{x3}
{x1, x3}
{x2, x3}
X

3. Given the bpa in Body of Evidence 2 what are the focal elements.

4. Given the bpa in Body of Evidence 2 fill in the following Table:
Set m Bel Pl

∅
{x1}
{x2}
{x1, x2}
{x3}
{x1, x3}
{x2, x3}
X

5. Given the bpa in Body of Evidence 3 what are the focal elements.

6. Given the bpa in Body of Evidence 3 fill in the following Table:
Set m Bel Pl

∅
{x1}
{x2}
{x1, x2}
{x3}
{x1, x3}
{x2, x3}
X

7. Given the bpa in Body of Evidence 4 what are the focal elements.

8. Given the bpa in Body of Evidence 4 fill in the following Table:
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Set m Bel Pl

∅
{x1}
{x2}
{x1, x2}
{x3}
{x1, x3}
{x2, x3}
X

9. Given the bpa in Body of Evidence 5 what are the focal elements.

10. Given the bpa in Body of Evidence 5 fill in the following Table:
Set m Bel Pl

∅
{x1}
{x2}
{x1, x2}
{x3}
{x1, x3}
{x2, x3}
X

11. Given the bpa in Body of Evidence 6 what are the focal elements.

12. Given the bpa in Body of Evidence 6 fill in the following Table:
Set m Bel Pl

∅
{x1}
{x2}
{x1, x2}
{x3}
{x1, x3}
{x2, x3}
X

13. Are any of Body of Evidence 1–Body of Evidence 6 probability distributions?
How about possibility distributions?

14. Fill in the following Table:
Set m Bel Pl

∅ 0.0
{x1} 0.0
{x2} 0.0
{x1, x2} 0.4
{x3} 0.1
{x1, x3} 0.1
{x2, x3} 0.4
X 1.0
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13.1. Dempster’s Rule

Suppose we have two bodies of evidence, one from Ann and one from Bob. Suppose
we want to fuse this data into a single body of evidence. We assume that both bodies
of evidence concern the same universe X bt that Ann and Bob view the situation
differently. Let Ann’s evidence be B1 = 〈F1,m1〉 and Bob’s evidence be B2 = 〈F2,m2〉.
Let K be the conflict among the bodies evidence. Conflict occurs when Ann and Bob
focus evidence on focal sets that have nothing in common. Ann’s evidence for A ∈ F1

and Bob’s evidence for B ∈ F2 conflict whenever A ∩ B = ∅. Defince the total conflict
as

K =
∑

A∩B=∅

m1 (A)m2 (B)

where A ∈ F1 and B ∈ F2 . Then we can create a fused body of evidence B = 〈F ,m〉
from Ann’s evidence B1 = 〈F1,m1〉 and Bob’s evidence be B2 = 〈F2,m2〉 by setting the
focal set of B = 〈F ,m〉 to

F = {A ∩B | A ∩B 6= ∅ and A ∈ F1 and B ∈ F2}

and defining the basic probability assignment of B = 〈F ,m〉 for C ∈ F as

m(C) =

∑
A∩B=C m1 (A)m2 (B)

1−K

If we do not divide by the conflict term 1 − K then m will not sum to one. The
normalization factor above, 1 − K, has the effect of completely ignoring conflict and
attributing any mass associated with conflict to the null set. This combination rule
for evidence can therefore produce counterintuitive results when there is significant
conflict or not.

Example 88. Let us examine the following bodies of evidence defined on three sus-
pects of a crime x1 = Ralph, x2 = Sue, and x3 = Tom, so that X = {x1, x2, x3}.

Ann is an invistigative reporter and determins that there are four critical pieces of
evidence, that assign guilt thusly,

m1({x1, x2}) = 0.3 (13.1)

m1({x3}) = 0.1

m1({x2, x3}) = 0.2

m1(X) = 0.4 .

We interpret m({x1, x2}) = 0.3 as one piece of evidence, say eye–witness testimony,
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that places Ralph and Sue in proximity of the crime scene. The reliability of the eye–
witness causes us to weight this evidence as having 30% of the available credibility.
The focal set for this body of evidence is:

F1 = {{x1, x2}, {x3}, {x2, x3}, {x1, x2, x3}}; (13.2)

Bob is NCIS and arrives at the follwing body of evidence as a result of his investi-
gation.

m2 ({x1}) = 0.3 (13.3)

m2 ({x1, x2}) = 0.2

m2 ({x1, x2, x3}) = 0.5

The focal set for this body of evidence is

F2 = {{x1} , {x1, x2} , {x1, x2, x3}} . (13.4)

Conflict between bodies of evidence ocurs when focal sets have an empty intersec-
tion. For example {x3}∩{x1} = ∅ so the product of their weights m1({x3}) and m2({x1})
, or 0.1× 0.3, gets added to K.

K = m1({x3})×m2({x1}) +m1({x3}1)×m2({x1, x2}) +m1({x2, x3}1)×m2({x1})
= 0.1× 0.3 + 0.1× 0.2 + 0.2× 0.3

= 0.13

In the fused body of evidence m12 ({x1}) would be the sum of all the evidence where
Ann and Bob’s evidence agrees only on {x1} divided by 1−K. Thus:

m12 ({x1}) =
m1({x1, x2})×m2({x1}) +m1(X)×m2({x1})

1−K

=
0.3× 0.3 + 0.4× 0.3

0.87
= 0.2414

The following Table shows the bpa, possibility, and necessity of the fused body of
evidence for all the subsets of X.

Set m Bel Pl
∅ 0.00 0.00 0.00
{x1} 0.43 0.43 0.43
{x2} 0.20 0.20 0.20
{x1, x2} 0.00 0.64 0.64
{x3} 0.36 0.36 0.36
{x1, x3} 0.00 0.80 0.80
{x2, x3} 0.00 0.57 0.57
X 0.00 1.00 1.00
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Define a possibility distribution on X

Zadeh is also important to evidence theory due to his critique of Dempster’s rule of
combination Zadeh (1984). The following example is due to Zadeh.

Example 89 (Effect of high conflict.). Suppose that one doctor believes a patient has
either meningitis — with a probability of 0.99 — or a brain tumor — with a probability
of only 0.01. A second doctor believes the patient suffers from concussion — with
a probability of 0.99 — and also believes the patient has a brain tumor — with a
probability of only 0.01. Since the only non–conflicting diagnosis is brain tumor, it is
the only result with a positive basic probability. When we normalize it, we will get
that m(brain tumor) = 1 and hence Bel(brain tumor) = 1 so that we have total beleif in a
brain tumor even though each doctor beleives this diagnosis is a remote possibility.

Example 90 (Effect of low conflict.). Suppose that one doctor believes a patient has
either a brain tumor — with a probability of 0.99 — or meningitis — with a probability
of only 0.01. A second doctor also believes the patient has a brain tumor — with
a probability of 0.99 — and believes the patient suffers from concussion — with a
probability of only 0.01. Since the only non–conflicting diagnosis is brain tumor, it is
the only result with a positive basic probability. When we normalize it, we will get
that m(brain tumor) = 1 and hence Bel(brain tumor) = 1 so that we have total beleif in a
brain tumor even though neither doctor is absolutely sure of his diagnosis.

In both of the above examples we the same result, which is counter to our intuition.
As a result, many alternative methods of fusion have been proposed. One easy way
out of this delemma is not to normalize the results. OblowOblow (1986) was one of
the first to propose that evidence be allowed to accumulate on the empty set in a
variation of evidence theory he termed O-Theory. Yager Yager (1987) was the first to
propose this fix for data fusion. Many modern applications of evidence theory assume
that m(∅) can be positive, especially in data fusion.

13.2. Reaching a Verdict by Weighting Evidence

We will now examine some alternative methods of fusing evidence based on weight-
ing the experts. We will see how the classical decision making rules formulated by
Hooper, Dempster, Bayes, and Jeffrey are special cases of weighting bodies of evi-
dence. The case of a body of evidence induced by a fuzzy set is also introduced.

A body of evidence induces a probability (or credibility) distribution on the class
P (X) of all possible subsets of X. We will assume that evidence can now reside upon
the empty set.

Thus mi : P (X) −→ [0, 1] and

(1) m(∅) ≥ 0 (13.5)

(2)
∑

A∈P(X)

mi(A) = 1.

The number mi (A) denotes the probability (or credibility) that the suspects belong
to the subset A but not to a subset of it. The class of focal subsets of X corresponding
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to mi is
Fi = {A | A ⊆ X, mi (A) > 0} . (13.6)

The belief, plausibility and ambiguity of A induced by mi are defined as

Beli (A) =
∑

B⊆A,B 6=∅

mi (B) ,

P li (A) =
∑

B∩A6=∅

mi (B) .

Ambi (A) =
∑

B∩A6=∅,B*A

mi (B) .

Definition 69 (Simple evidence). Simple evidence refers to the case when the bod-
ies of evidence are mutually independent. A body of evidence induces a probability
(credibility) distribution on P (X). Thus mi : P (X) −→ [0, 1] is a bpa. The number mi (A)
denotes the probability (or credibility) that the suspects belong to the subset A but
not to a subset of it.

Definition 70 (Mixed evidence). A pair of dependent bodies of evidence, let us say
witness i and witness j testifying dependently, induce a joint probability (credibility)
distribution, namely mij : P (X) × P (X) −→ [0, 1] , where mij (A,B) is the probability
(credibility) that witness i focuses on subset A and witness j focuses on subset B. If
the bodies of evidence are independent, then mij (A,B) = mi (A)mj (B). If mj (B) > 0,
the conditional probability (credibility) distribution on P (X) given B is mi|j (A | B) =
mij (A,B) /mj (B). The corresponding class of focal pairs of subsets is

Fij = {(A,B) | A ⊆ X, B ⊆ X, mij (A,B) > 0}

.

In a natural way we can introduce the functions BelBel, BelP l, P lP l, BelAmb, etc.,
on P (X). Thus, for instance,

BelP lij (A,B) =
∑

C⊆A, C 6=∅

∑
D∩B 6=∅

mij (C,D) .

Obviously, if the bodies of evidence i and j are independent, then BelP lij is equal to
Beli × Plj, or BelP lij (A,B) = Beli (A)Plj (B) .

Definition 71 (The Judge). A judge, or decision maker, or jury has to reach a verdict
about the culpability or innocence of the suspects based on the available evidence
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and his own judgement. Mathematically, the judge is associated with a family of
conditional weights which is a family of non-negative functions on P (X) conditioned
by the available evidence.

For the body of evidence #i for which mi is the probability (credibility) distribution
induced on P (X) the judge must determine weights wi (· | ·)1 where

wi (· | ·) : P (X)× Fi −→ [0,∞) .

The judge assignes weight wi (C | A) which represents the culpability of the subset
C ∈ P (X) if the i-th body of evidence focuses on the culpability of the subset A ∈
Fi. Here both C and A are a collections of suspects; A must be a focal set of body
of evidence #i but C is arbitrary. The larger the weight the larger the potential
culpability of the corresponding subset of suspects. From mathematical point of
view, except nonnegativity, the only condition imposed on the family of weights is

∑
C∈P (X)

∑
A∈Fi

wi (C | A) mi (A) = 1 . (13.7)

The judge may assign positive weights to many wi (C | ·), since, in his view, the
credibility in many focal sets of of the body of evidence #i may transfer to the same
C ∈ P (X). When we multiply the weight wi (C | ·) by mi (·), and sum over focal sets of
body of evidence #i we get a new credibiliy distribution on P (X) given by

µi (C) =
∑

A∈F (X;mi)

wi (C | A)mi (A) , (13.8)

abbreviated by µi = wi ?mi. The larger the weight the larger the potential culpability
of the corresponding subset of suspects. From mathematical point of view, except
nonnegativity, the only condition imposed on the family of weights is∑

C∈P (X)

∑
A∈F (X;mi)

wi (C | A)mi (A) = 1, (13.9)

The conditions on the weights of positivity and satisfying Eq. 13.9 guarantee that that
µi given by Eq. 13.8 is a probability (credibility) distribution on P (X).

Definition 72. A family of weights is probabilistic if they satisfy the equalities∑
C∈P (X)

wi (C | A) = 1 for every A ∈ F ( X;mi) . (13.10)

Obviously, (13.10) implies (13.9) but the converse is not necessarily true. If the fam-
ily of weights is probabilistic and objective, based exclusively on relative frequencies,
then wi (C | A) may be calculated using the standard formula for conditional proba-
bilities. If, however, the family of weights is both nonprobabilistic and subjective,

1In probability theory, it is common to use a dot as a placeholder for an unnamed and unnumbered
variable.
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then wi (C | A) simply reflects what the judge believes about the culpability of C if the
direct evidence focuses on the subset A and no special rules is necessarily used for
getting it.

Some important kinds of judge weighting are:

Reliance If the judge fully relies on the i-th body of evidence, then wi (A | A) = 1 and
wi (C | A) = 0 if C is different from A, for every A ∈ F (X;mi), which implies
µi (A) = mi (A).

Indifference If the judge focuses on B ∈ P (X) regardless of what the i-th body of
evidence says, then wi (B | A) = 1 for every A ∈ F (X;mi), which implies µi (B) = 1.

13.2.1. Generalization

The formulas above can be generalize easily to weighting joint credibility distribu-
tions. They can also be generalized to cases where the universes of the experts
do not match. For example, Ann and Bob may arrive at different lists of subsets,
Ann may focus on subsets of X = {Ralph, Sue, Tom} while Bob focuses on subsets of
Y = {Ralph, Sue, Ursula}. In addition, it may be that the Judge has his own list of sus-
pects Z. We assign weights wij ( | , ) to a mixed evidence inducting the joint credibility
distribution mij on P (X)×P (Y ) . Thus the credibility distribution induced on P (X) by
the weighted mixed (i, j)-the body of evidence is

µij (C) =
∑

(A,B)∈Fij

wij (C | A,B)mij (A,B) with C ∈ P (Z) , (13.11)

where wi,j (C | A,B) is the judge’s weight of the subset C ∈ P (Z) given the mixed
evidence (A,B) ∈ Fij .

13.2.2. Fuzzy Evidence

Let F : X −→ [0, 1] be a fuzzy set. Then, the number F (x) is the degree of membership
of the element x ∈ X to the fuzzy set F . While it is not necessary that {F (x) | x ∈ X}
is a probability distribution on X but, as shown in Guiasu (1993a) that it induces a
probability distribution mF on P (X), defined by

mF (A) =
∏
x∈A

F (x)
∏
y∈A

[1− F (y)] with A ∈ P (X) . (13.12)

We note that if 0 < XF (x) , 1, for every x ∈ X, then F = P (X). All the consideration
made above could be applied to the case when the available evidence is provided by
fuzzy sets defined on X.

13.3. The Tuesday Night Club.

Here we present a long example first presented by Silviu Guiasu Guiasu (1993b,
1994), it is taken from Agatha Cristie’s story “The Tuesday Night Club.”

Breifly, Mrs Jones has died and the characters involved are:
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J Mr. Jones, the husband of Mrs. Jones,

C Miss Clark, Mrs. Jones companion,

Dr The Doctor,

D The daughter of the Doctor,

G Gladys Lynch, the Maid.

Thus the universe is U = {J,C,Dr,D,G}.
There will be several bodies of evidence, each numbered #i and giving a credibility

distribution mi : U → [0, 1]. Notationally, mi ({C,D}) would be the credebility implied
(⇒) by the ith body of evidence to the proposition that the death of Mrs. Jones was
perpetrated by Miss Clark and the Doctor’s daughter. In addition mi(∅) is the evidence
that no one is guilty, and that the death was just an unfortunate acccident. As is usual
in evidence theory, only the positive weights are mentioned in each body of evidence.
All other values are zero.

Body of Evidence #1: J, C, and Mrs Jones sat down to a supper consisting of tinned
lobster and salad, trifle, and bread and cheese. Later in the night all three became
violenetly ill and the Doctor was summoned. Both J and C recovered, but Mrs. Jones
died and was duly barried. The death certificate listed ptomaine poisoning as the
cause of death.

#1⇒ m1(∅) = 1

Body of Evidence #2: J had spent the previous night at a small hotel in Birming-
ham. The next morning the chambermaid found on the blotting paper the folllowing
phrases; “entirely dependent on my wife,” “when she is dead I will,” and “hundreds
of thousands.” Also J had been very attentive to D. He also benefitted by his wifes
death to the amount £8000.

#2⇒ m2({J}) = 1

Body of Evidence #3: An autopsy was ordered. The body was exhumed and it was
determined that Mrs. Jones had died of arsenic poisoning.

#3 ⇒ m3({J}) =
1

5

⇒ m3({C}) =
1

5

⇒ m3({Dr}) =
1

5

⇒ m3({D}) =
1

5

⇒ m3({G}) =
1

5

Body of Evidence #4: J’s testimony. The freindship with D had ended two months
before the death. The phrases on the blotter came from an innocent letter he had
written to his brother.
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#4⇒ m4(∅) = 1

Body of Evidence #5: Dr’s testimony plus an investigation performed upon him by
Scotland Yard

#5⇒ m5(∅) = 1

Body of Evidence #6: After supper, J had gone downstairs and demanded a bowl
of corn-flour for his wife. This had been prepared by G. J had waited and carried the
bowl up to his wife personally. J had motive and opportunity.

#6⇒ m6({J}) = 1

Body of Evidence #7: C’s testimony. The bowl of corn-flour was drunk by her. She
was banting at the time and she was always hungry. and Mrs. Jones had changed her
mind about tasting the corn-flour.

#7⇒ m7(∅) = 1

Subsequently, Sir Henry of Scotland yard asked four consultants for their conclu-
sions; Joyce, Mr. Pethric, Ramod, and Miss Marple. In the following computations
we are using formula () and hence

m1,2,3,4,5,6,7 = m1m2m3m4m5m6m7 .

Mr. Pethric (a solicitor, relying on facts and money): J was guilty and C sheltered
him for money. She lied about the corn-flour to protect him. This gives five statements
of the form

⇒ w ({J,C} | ∅, {J}, A3, ∅, ∅, {J}, ∅) = 1

where A3 will cycle through the focal sets of the body of evidence introduced in #3.
Thus we replace A3 with {J} , {C} , {Dr} , {D} , {G} sequentially. Using these weights
and the seven bodies of evidence in formula gives µ(J,C) = 1.

Joyce (a young artist, relying on intuition): C was guilty. She was in love with J and
hated his wife. As in the previous analysis we get five weights as A3 is replaced by
each of {J} , {C} , {Dr} , {D} , {G}.

⇒ w ({C} | ∅, {J}, A3, ∅, ∅, {J}, ∅) = 1

In this case we get the verdict implied is ⇒ µ(C) = 1.
Raymond (a young writer, relying on imagination): D was guilty. After diagnosing

the poisoning symptoms he sent a messenger home for some opium pills for Mrs.
Jones, to relieve her acute pain. D, who was in love with J, had motive and opportunity.
D therefore sent back pills containing arsenic.

⇒ w ({D} | ∅, {J}, A3, ∅, ∅, {J}, ∅) = 1

In this case we get the verdict implied is ⇒ µ(D) = 1.
Miss Marple (an old lady relying on life experience and analogy): A similar case

had happened in Mary St. Mead village. G performed the murder, goded by J who
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made her his murder instrument.

⇒ w ({G, J} | ∅, {J}, A3, ∅, ∅, {J}, ∅) = 1

In this case we get the verdict implied is ⇒ µ({G, J}) = 1.

Scotland yard (gives each body of evidence equal weight): Scotland yard then
evaluates each individual suspect, as well as the possibility that it was an acci-
dent. Now only the body of evidence #3 has more than one focal set. When that
focal set is {J}, that is when A3 = {J}, we are looking at something of the form
w (X | ∅, {J}, {J}, ∅, ∅, {J}, ∅) which is only positive if X = ∅ or X = {J}. Notice that the
weight is positive only if the set on the left of the “given” bar “|” is contained in the
list on the right of the bar. In this particular case four of the bodies of evidence (num-
bers {#1,#4,#5,#7}) focus on the empty set and three (numbers {#2,#3,#6}) focus
on the set containing J . Therefore

w (∅ | ∅, {J}, {J}, ∅, ∅, {J}, ∅) =
4

7

w ({J} | ∅, {J}, {J}, ∅, ∅, {J}, ∅) =
3

7

When A3 = {C} there are three different focal sets given, and we get the following
weights:

w (∅ | ∅, {J}, {C}, ∅, ∅, {J}, ∅) =
4

7

w ({J} | ∅, {J}, {C}, ∅, ∅, {J}, ∅) =
2

7

w ({C} | ∅, {J}, {C}, ∅, ∅, {J}, ∅) =
1

7

When A3 cylcles through the remaining three focal sets, {Dr}, {D}, and {G} we get
results similar to the previos case. When A3 = {Dr} we have:

w (∅ | ∅, {J}, {Dr}, ∅, ∅, {J}, ∅) =
4

7

w ({J} | ∅, {Dr}, {C}, ∅, ∅, {J}, ∅) =
2

7

w ({Dr} | ∅, {J}, {Dr}, ∅, ∅, {J}, ∅) =
1

7

When A3 = {D} we have:

w (∅ | ∅, {J}, {D}, ∅, ∅, {J}, ∅) =
4

7

w ({J} | ∅, {J}, {D}, ∅, ∅, {J}, ∅) =
2

7

w ({D} | ∅, {J}, {D}, ∅, ∅, {J}, ∅) =
1

7

Finally, when A3 = {G} we have:
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w (∅ | ∅, {J}, {G}, ∅, ∅, {J}, ∅) =
4

7

w ({J} | ∅, {J}, {G}, ∅, ∅, {J}, ∅) =
2

7

w ({C} | ∅, {J}, {G}, ∅, ∅, {J}, ∅) =
1

7

The amalgamation of the conditional weights and the bodies of evidence, using
formula (4) we produce the following results:

µ (∅) = 4
7

µ ({J}) = 11
35

µ ({C}) = 1
35

µ ({Dr}) = 1
35

µ ({D}) = 1
35

µ ({G}) = 1
35

Body of Evidence #8: G’s deathbed testimony. J had promised to marry her when
his wife was dead. Following J’s instruction she put arsenic on the trifle (thousands
and thousands is UK slang for sugar sprinkles). Only Mrs. Jones ate the trifle since
G was on a diet (banting) and J just brushed off the sprinkles. She had a child with J
which died at birth and J deserted her for another woman.

Scotland yard (based on this confession): Now calculates

⇒ w ({G, J} | {G, J}) = 1

and
⇒ µ ({G, J}) = 1

13.4. Special Cases

13.4.1. Hooper’s Rule

Suppose that Ann and Bob both have bodies of evidence that divide the universe into
A and Ā = X − A. Thus F1 = F2 = {A, Ā} and the respective cridibilty distributions
are m1 and m2 respectively. The judge decides that evidence fuses onto A whenever
either Ann or Bob focus on A and that evidence fuses onto Ā only when both Ann and
Bob agree on Ā. The judge’s weights are then

w1,2(A | A,A) = 1

w1,2(A | A,A) = 1

w1,2(A | A,A) = 1

w1,2(A | A,A) = 1 .

Then, according to Eq. 13.8, we have
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m1,2(A) = 1− [1−m1(A)] [1−m2(A)]

m1,2(A) = m1(A)m2(A) .

According to Lindley Lindley (1987), this rule for combining evidence was used by
G. Hooper in 1685.

13.4.2. Dempster’s Rule

Suppose that Ann and Bob have arbitrary bodies of evidence.
The judge adds up all the weights of evidence where Ann and Bob have some agree-

ment, i.e., where A is a focal element for Ann and B is a focal element for Bob and
A ∩B 6= ∅. The judge uses this weight as a normalizing factor so that

w1,2 (A ∩B | A,B) =

1−
C∩D=∅∑

C∈F1,D∈F2

m1 (C)m2 (D)

−1 ,
for all A ∈ F1, B ∈ F2, A ∩B 6= ∅. With these weights Eq. 13.8, becomes

µ1,2 (C) =

∑
C=A∩B

m1 (A)m2 (B)

1−
∑

A∩B=∅
m1 (A)m2 (B)

,

which is Dempster’s rule Dempster (1967b) of combining two independent bodies
of evidence. It gives equal credit to the common evidence and discards any other
evidence. According to Shafer (1976), in the special case of a universe containing
only two elements, this rule was used by J.H. Lambert in his Neues Organon published
in 1764.

13.4.3. Jeffrey’s Rule

13.4.3.1. First interpretation

Suppose that Ann’s information is a probability distribution pY on Y and that Bob’s
evidence is a probability distribution qZ on Z. The judge will fuse evidence onto
X = Y × Z. We will use the shorthand notation of y × Z for the set of ordered pairs
{y}×Z = {〈y, z1〉 , 〈y, z2〉 , · · · , 〈y, zn〉}, and, similarly, Y ×z is shorthand for the set of pairs
Y × {z} = {〈y1, z〉 , 〈y2, z〉 , · · · , 〈ym, z〉} Assume that Ann’s evidence is of the form

F1 = {y × Z | y ∈ Y } ,
m1 (y × Z) = pY (y) ,

and Bob’s evidence is of the form

F2 = {Y × z | z ∈ Z} ,
m2 (Y × z) = qZ (z) .
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Finally we will in addition assume that there exists a conditional probaility distri-
bution pZ (· | y) on Z given y ∈ Y , and pZ , the prediction probability distribution on Z is
defined by

pZ (z) =
∑
y∈Y

pZ (z | y) pY (y) ,

where pY is interpreted as being the prior probability distribution on Y .
The judge fuses the evidence with weights

w ({〈y, z〉} | y × Z, z × Y ) = pZ (z | y) /pZ (z) . (13.13)

giving

µ1,2 (C) =
∑
A∈F1

∑
B∈F2

w (C | A,B) m1 (A)m2 (B) .

Then, when C contains a single ordered pair, we conclude

µ1,2 ({〈y, z〉}) =
pY (y) pZ (z | y)

pZ (z)
qz (z) ,

which is a probability distribution on Y × Z. Its marginal probability distribution,
namely

pY (y | qZ) = Bel12 (y × Z) (13.14)

=
∑
z∈Z

µ1,2 ({〈y, z〉})

=
∑
z∈Z

pY (y) pZ (z | y)

pZ (z)
qz (z) ,

which is Jeffrey’s rule Jeffrey (1983) for calculating the posterior probability distribu-
tion on Y given the actual probability distribution qZ on Z.

13.4.3.2. Second interpretation

Jeffrey’s rule may be obtained more directly from Eq. 13.8, as a weighting with
indirect evidence. Indeed, let X and Y be two finite crisp (Cantor) sets and m a
probability distribution on P (Y ) such that

F = {{y} | y ∈ Y },
m ({y}) = q(y),

where q is the actual probability distribution on Y . Taking the only positive weights
on P (X) to be

w ({x} | {y}) =
p (y | x) p (x)∑
x∈X p (y | x) p (x)
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where p is a prior probability distribution on X and p (· | x) is a conditional probability
distribution on Y given x ∈ X, the weighted probability distribution becomes

p(y | qZ) = µ ({x}) (13.15)

=
∑
y∈Y

w ({x} | {y}) q (y) (13.16)

=
∑
y∈Y

p (y | x) p (x)∑
x∈X p (y | x) p (x)

q (y) ,

which is Jeffrey’s rule for calculating the posterior probability distribution on X.

13.4.4. Bayes’ Rule

Taking

qZ (z) =

{
1 if z = z0

0 if z 6= z0

the formula 13.14becomes Bayes’ rule for calculating the posterior probability distri-
bution, namely

pY (y | z0) = p(y | qZ)

=
pZ (z0 | y) pY (y)

pZ (z0)
.

Bayes’ rule may also be obtained from Eq. 13.16 by taking q to be a degenerate
probability distribution focussed on a single element {y0}, i.e. q ({y0}) = 1.

13.5. Conclusions

In Shafer’s approach to evidence m (∅) has to be always equal to zero. This is an
unnecessary restriction because m is not obtained by extending a probability distri-
bution on X to a probability measure on P (X), but is directly defined as a probability
distribution on P (X), in which case m (∅) could be positive, corresponding to the fre-
quent case when there is a positive probability of having nobody guilty in the universe
X.

“The process of reaching a verdict essentially depends on how the available evi-
dence is used by the judge or jury. The evidence may be significant, partially relevant,
or misleading and the judge may use it in an objective or subjective way. “

Homework

Let X = {x1, x2, x3} and let
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m ({x1}) = 0.1
m ({x3}) = 0.3

m ({x1, x2}) = 0.4
m(X) = 0.2

m ({x1, x3}) = 0.2
m ({x2, x3}) = 0.3
m ({x1, x2}) = 0.4

m(X) = 0.1

m ({x1}) = 0.1
m ({x1, x2}) = 0.3

m(X) = 0.6

Body of Evidence 1 Body of Evidence 2 Body of Evidence 3

m ({x3}) = 0.1
m ({x2, x3}) = 0.4

m(X) = 0.2

m ({x1}) = 0.1
m ({x2}) = 0.3
m ({x3}) = 0.6

m ({x1}) = 0.7
m ({x2}) = 0.3

Body of Evidence 4 Body of Evidence 5 Body of Evidence 6

1. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Dempster’s
Rule.

2. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Hooper’s
Rule.

3. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Jeffrey’s Rule.

4. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Bayes’s Rule.

5. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Dempster’s
Rule.

6. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Hooper’s
Rule.

7. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Jeffrey’s Rule.

8. Fuse the data in Body of Evidence 1 and Body of Evidence 2 using Bayes’s Rule.

9. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Dempster’s
Rule.

10. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Hooper’s
Rule.

11. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Jeffrey’s Rule.

12. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Bayes’s Rule.

13. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Dempster’s
Rule.

14. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Hooper’s
Rule.

15. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Jeffrey’s Rule.

16. Fuse the data in Body of Evidence 3 and Body of Evidence 2 using Bayes’s Rule.
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14.1. Introduction

In science, it is often usefull, and interesting, to read the papers where an idea
originates.

Shafer’s book on evidence theory recast Dempster’s work into an elegant form. It
providede many interesting additions and expansions. But did it capture all of the
characteristics of Dempster’s work?

Dempster’s original formulation of upper and lower probabilities Dempster (1967b,a) was
originally couched in terms of probability theory and inverse mappings. Dempster
considered the situation where there was a finite set Xwith an unknown probability
distribution p. What was known was the probability measure of a certain class of
events, that is, there were sets A1, A2, . . . ⊆ X where P (Ai) was known. Given this data
Dempster asked “What can be inferred about the probability of an arbitrary event?”

Dempster stated that the data imparted constraints upon the unknown probabil-
ity distribution. One potential outcome was that the data was inconsistent with any
probability distribution. The second potential was that only one probability distribu-
tion fit the known data. The third potential outcome was that their existed a sheaf of
probability distributions that fit the data.

Dempster examined the third potential outcome, and determined that for an arbi-
trary event, the best we could do was determine an upper rand lower probability, and
that the true probability was bounded by these two vales.

Shafer wrote his treatise on Evidence theory using Dempster’s work as an inexact
basis. Instead of staring from a known set of data about certain events, Shafer starts
with a probability distribution m upon the power set of the (finite) universe of dis-
course. He terms this distribution a basic probability assignment, or bpa. Using the
bpa he shows how to determine an upper and lower measure upon any subset of the
universe and, calls these measures Plausibility and Belief.

14.1.1. Upper and Lower Probabilities

In probability theory, weights expressing evidential claims are assigned to individual
elements of some universal set X. The probability of any subset of the sample space
X is calculated by adding the weights of the subset’s elements. Dempster examined
the inverse problem. Suppose you know the probabilities of some subsets of a uni-
versal set. What can you say about the probabilities of the other subsets and of the
singletons?

If the evidence is not contradictory then, usually, the problem does not allow for an
exact solution. Instead, for each subset of the universe, a maximum and minimum
probability consistent with the given probabilities can be calculated. The correct
solution then lies somewhere in the interval between these two values.
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The minimum consistent probability assigned to a set A ⊆ X is called the lower
probability of A and is denoted P∗(A). The maximum consistent probability assigned
to a set A ⊆ X is called the upper probability of A and is denoted P ∗(A). The correct
probability assigned to A, Pro(A) must be bracketed by these values, i.e.,

P∗(A) ≤ Pro(A) ≤ P ∗(A) (14.1)

or

Pro(A) ∈ [P∗(A), P ∗(A)] . (14.2)

As expressed by Dempster, there is a family of probability measures, P, bounded by
the dual upper and lower probabilities and consistent with the given evidence,

P = {Pro |P∗(A) ≤ Pro(A) ≤ P ∗(A) for all A ⊆ X } . (14.3)

14.2. Shafer not equal to Dempster

While Shafer’s Evidence theory has a beautiful formulation, as we will see, it does
not capture all of the possibilities inherent in Dempster’s original formulation.

In Dempster’s framework we have a universe and a collection of observed proba-
bilities for events in this universe. If the data is non-condradictory there are usually
many probability distributions on the universe that could produce the given observed
data. For every event a largest and smallest probability consistent with the data can
be calculated. Dempster termed these values the lower probabilities, LP, and upper
probabilities, UP.

Example 91. Let X = {a, b, c, d} with given data P (a, b) = P (b, c) = 2
3 . It is not to dif-

ficult to derive that the distributions on X that could reproduce the data are of the
form P =

〈
2
3 − α, α,

2
3 − α, α−

1
3

〉
where α ∈

[
1
3 ,

2
3

]
. Given these distributions, maximal

and minimal probabilities for all events can be calculated. They are given in the
following table. In addition, using the formula m(A) =

∑
B⊆A(−1)|A−B|Bel(B), and asso-

ciating the lower probability of Dempster with the Belief measure of Shafer, Bel = P∗,
we calculate the basic probability assignment in the last column of Table 14.1.

This gives m(b, c, d) = −1
3 , a great difficulty. The bpa does still have a sum equal

to one. However we haven negative weights associated with certain sets. This con-
tradicts a basic axiom of evidence theory as well as its standard interpretation as a
probability distribution upon the power set of X, excluding the empty set. We see
then that Shafer’s interpretation is not an all-inclusive one.

14.3. Negative evidence and quantum mechanics

Quantum mechanics is an extremely successful theory in physics for the prediction of
the microverse. The Wigner function which corresponds to a probability distribution
is unfortunately negative in certain regions. Evidence theory, as originated by Demp-
ster, corresponds in some cases to a negative basic probability assignment, a result

216



14.4. Quantum mechanics and negative probability

a b c d P P∗ P ∗ m?

0 0 0 0 0 0 0 .
0 0 0 1 α− 1

3 0 1
3 0

0 0 1 0 2
3 − α 0 1

3 0
0 0 1 1 1

3
1
3

1
3

1
3

0 1 0 0 α 1
3

2
3

1
3

0 1 0 1 2α− 1
3

1
3 1 0

0 1 1 0 2
3

2
3

2
3

1
3

0 1 1 1 1
3 + α 2

3 1 −1
3

1 0 0 0 2
3 − α 0 1

3 0
1 0 0 1 1

3
1
3

1
3

1
3

1 0 1 0 4
3 − 2α 0 2

3 0
1 0 1 1 1− α 1

3
2
3

−1
3

1 1 0 0 2
3

2
3

2
3

1
3

1 1 0 1 1
3 + α 2

3 1 −1
3

1 1 1 0 4
3 − α

2
3 1 −1

3

1 1 1 1 1 1 1 2
3

Table 14.1.: The Basic Probability Assignment, Lower and Upper probabilities of Ex-
ample 91.

that Shafer disallows. This paper shows that allowing negative evidence permits the
modeling of interference effects in the two slit experiment.

14.4. Quantum mechanics and negative probability

Quantum mechanics is one of the most successful physical theories in the history of
science. Quantum mechanics predictions about the results of an experiment are
unerringly accurate. However, quantum mechanical predictions about the result
of an experiment are probabilistic in nature. Quantum mechanics cannot predict
whether or not a particle will decay at a specific moment. Quantum mechanics can
predict what percentage of a mass of particles will decay over a given time period
with spectacular accuracy.

One of the many interesting results in quantum mechanics are negative proba-
bilities Feynman (1987). Feynman states that the probability of an event that can
actually occur never turns out to be negative, but that the probabilities in the inter-
mediate calculations can have negative values.

For example suppose an apples vendor starts with 6 apples. At noon he is resup-
plied with 5 additional apples. During the day he sells a total of 8 apples. The result
is 6 − 8 + 5 apples, or 3 apples. An intermediate calculation if we group the terms
appropriately gives 6 − 8 = −2 apples or negative two apples. Now, no one can have
a negative number of apples since this is simply the result of a bookkeeper, starting
with an initial stock, first subtracting the sales, and then adding the restock. The
bookkeeper’s intermediate results are negative but this is not reflected in the real
world. Another example, from statistical signal processing, occurs when we take a
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A H T

H α 1
3 − α

T 1
3 − α

1
3 + α

B H T

H 1
9

2
9

T 2
9

4
9

C H T

H 0 p
T 1− p 0

D H T

H 1
6

1
2

T 1
2

−1
6

Table 14.2.: Joint probabilities of the outcomesd of tossing two coins. (A) Joint
probailities induced by the marginal ditributions of P (H) = 1

3 and P (T ) =
2
3 where α ranges from 0 to 1

3 . (B) The noninteractive solution of (A). (C)
Marginal probabilites where the P (H) = P (T ) = 0 (C) Pseudo probabilites
that satisfy both the requirements of both (A) and (C).

function g and use its Fourier transform G (which contains sin and cos terms which
may be negative in regions) in processing to remove noise. In the end we inverse-
transform the composition of G and the filter F to recover the source minus the noise.

A very popular and accessible review of Feynman’s paper was published in Di-
etrich Leibfried and Monroe (1998). It gives a simplified example of the troubles
probability theory has when applied to quantum mechanical applications. Imagine
we have two coins. If either coin is flipped independently in a black box, then the
ratio of heads to tails is 1:2. For either coin we have that the probability of heads
is one-third and the probability of tails is two-thirds, or P (Hi) = 1

3 and P (Ti) = 2
3 for

i = 1, 2. However when we flip both coins together in the black box it is always the
case that the coin one is heads and coin two is tails or coin one is tails and coin two
is heads. That is, the events that both coins are heads or both coins are tails never
occurs. Thus the probabilities of the events HH, HT , TH, and TT , are such that
P (HH,TT ) = 0 and P (HT, TH) = 1. Table 14.2 shows the results of various thinking.
The marginals induce the probability distribution shown in Table (14.2.A) where α
is in the interval 0 to 1

3 . The Table (14.2.B) shows the noninteractive solution where
P (HH) = P (H1) ∗ P (H2), etc. The Table (14.2.C) shows a probability distribution that
satisfies the requirements that HH and TT never occur together. The only way to
get a solution to both requirements is to abandon positivity, a result shown in Table
(14.2.D).

Lowe Lowe (1998) mentions that negative probabilities also appear in neural net-
works. Using a probabilistic learning rule that conditions individual neurons to learn,
it turns out that some inner nodes have negative weights but that the output nodes
always end up producing positive results. He also mentions that it is impossible, see
Rosenblatt (1956) and Yamato (1971), to generate approximations to (unknown) pdfs
which simultaneously satisfy the three ‘axioms’:

• Realness

• Positivity

• Reproduce correct expectation values.

If Lowe’s proposition is correct then the first (the values are real numbers) and the
third (the results correspond to the experiment) properties are not disposable, and
positivity is the property we must abandon.
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14.5. Negative evidence

A revised theory of evidence that allows for a negative bpa does not allow for negative
beliefs. Here we have a terminology problem, beliefs and plausibilities are Lower
and Upper Probabilities respectively and cannot be negative. While termed a bpa by
Shafer, the function m that can be calculated from Bel using the formula in Eq. (12.4)
is simply the combinatorial result of the Mobius inversion formula. A better name
for the function m then is a basic evidential weight, or bew, which in our case is a
function m : P(X)→ [−1, 1],which is required to satisfy three conditions:

(i) m(∅) = 0

(ii)
∑
A∈P(X)m(A) = 1

(iii) 0 ≤
∑
B⊆Am(B) ≤ 1 ∀A ⊆ X

Under these new restrictions both Bel and Pl are still fuzzy measures, that is mono-
tone, positive set functions.

It is not always easy to create bews that satisfy requirement (iii). However, if we
have start from a collection of lower probabilities, P∗, as in Dempster and Example
(91), we can always calculate a bew using Eq. (12.4), with the assumption that
Bel ≡ P∗ , that satisfies all the requirements of a revised evidence theory.

14.6. Quantum mechanics and negative evidence

If we abandon the positivity requirement for evidence theory and instead use a bew
that ranges over the interval [−1, 1] then we arrive at a theory that has some inter-
esting applications. Consider for example the two slit experiment in physics where a
polarized light is behind a screen containing two slits.

If only the left slit L is open then the photons spread out from it with a distribution
that depends only on the distance from the L opening. Similarly if only the right slit
R is open then the photons spread out from it with a distribution that depends only
on the distance from the R opening. However if both slits are open then a curious
interaction in the wave nature of particles (and the particle-wave model is at the heart
of quantum mechanics) causes dark and light bands. If we consider a dark region,
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b, in between the two slits then the probabilities of a particles landing there when
either of the two slits is open is some positive probability β, or P (b|L) = P (b|R) = β .
However the probability of a photon landing in b if both the slits are open is zero, so
that P (b|L,R) = 0. This defies the monotone nature of probabilities. If we abandon
positivity in evidence theory we can give a fascinating model of the interaction of the
photons as presented in Table (14.3). The bew still sums to one, and note that all
the lower probabilities or Beliefs are positive. The interesting bews are the values
m(b|L) = m(b|R) = 0.1 and m(b|L,R) = −0.2. We can interpret m(b|L,R) = −0.2 as saying
that when slits L and R are both open then the weight that flows to event (b|L,R) from
m(b|L) and m(b|L) is canceled out. The corresponding Beliefs are Bel(b|L) = Bel(b|R) =
0.1 and Bel(b|L,R) = 0.0. All of the bews and Bels are spelled out in Table (14.3).

Set Slits bew Bel

a L 0.2 0.2
b L 0.1 0.1
c L 0.05 0.05

a,b L 0 0.3
a,c L 0 0.25
b,c L 0 0.15

a,b,c L 0 0.35
a R 0.05 0.05
b R 0.1 0.1
c R 0.2 0.2

a,b R 0 0.15
a,c R 0 0.25
b,c R 0 0.3

a,b,c R 0 0.35
a L,R 0.25 0.5
b L,R -0.2 0
c L,R 0.25 0.5

a,b L,R 0 0.5
a,c L,R 0 1
b,c L,R 0 0.5

a,b,c L,R 0 1

Table 14.3.: Evidence ditribution that produces the desired lower Beliefs

Remark 9. It is not possible to get a better model of the coin flipping example
using evidence theory. The marginal constraints combined with the double flip-
ping constraints allow for a single probability distribution, the one given in Table
(14.2.D). For this example the upper and lower probabilities are simply the probabil-
ities P ≡ P ∗ = P∗ and m is identical to the single quasi-probaility distribution given in
Table (14.2.D).
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14.7. Conclusions

In Dempster’s original papers, lower probabilities are the inf of the probability of an
event over a constrained set of probability distributions. We have seen that a Mobius
inversion of the lower probabilities can produce a function m that contains values
that are negative. Negative values in this function can be interpreted as restrictions
on the flow of probability weights onto an event.

Negative evidential weights may be useful in modeling other events where there
are simultaneity restrictions. For example, the Heisenberg Uncertainty Principle
states that it is impossible to simultaneously measure the mass and momentum of a
particle to arbitrary degree of precision.

We should mention that there is much disagreement in evidence theory about the
process of conditioning or information fusion, see for example Friedman and Halpern
(1999).
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Fuzzy Logic and Control
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15. Fuzzy Logic

Classical logic is briefly described in Section 3. Implication, if A then B, is modeled
in classical logic with the right arrow operator A → B. The result of implication for
every possible truth assignment is given in the Truth Table (15.1), where 0 represents
false and 1 represents true.

Logic is one of those subjects that just invites argument in every sense of the word.
Aristotle said “A truth can only be derived from previously known truths.” The prob-
lem is, where do we start? How do we get first truths? In mathematics these known
truths are called axioms. They are reasonable statements that can be accepted with-
out justification. Except, every axiom of every formal system has been justified in nu-
merous texts. And some axioms, such as the axiom of choice, that one can randomly
choose an example element from a set, which is absolutely indispensable to most
of mathematics, leads to conclusions that are not easily accepted (the well ordering
theorem). “Where logic deals with ideals and abstractions it can have no meaning”
This is a direct quote from one of the most famous logicians who ever lived, Bertram
Russel. Thus classical logic is abstract and its results are meaningless — literally
meaningless.

Numbers for example have no physical representation. There can be two apples
but there is never a physical two. An apple is a thing you can see and feel and eat, a
two cannot be seen, felt, tasted, etc. it can only be imagined. The variable v can be
two but can v be an apple? No, a map is not a country, a picture is not a mountain,
a poem is not a tree. There are even worse problems with logic, Godël proved that
you could not prove all the truths that a formal logic could express, unless the logic
contained paradox, a statement the was both true and false like “Everything I say is a
lie”.

The purpose of this chapter is to extend classical logic to fuzzy logic as classical
or crisp sets were extended to fuzzy sets. However, as will be seen we may have to
abandon the truth table () in its entirety. It is also important to note that this is not the
first attempt to extend classical logic. Many others have tried, including Lukasiewicz
who developed a three valued logic for true, false, and unknown as well as multi-valued

A B A→ B

row 1 0 0 1

row 2 0 1 1

row 3 1 0 0

row 4 1 1 1

Table 15.1.: The truth table for the logical connective: implication.
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logics. The logic of two-values is often called Boolean logic.

15.1. Implication

Fuzzy logic expands classical logic by simple expanding the role of the characteristic
or membership function. Logical connectives are functions like max : [0, 1]×[0, 1]→ [0, 1]
for or and min : [0, 1] × [0, 1] → [0, 1] for and. But the point of fuzzy logic is not the
abstract manipulation of truth values. It is not designed to serve in the construction
of mathematical proofs, like “There are an infinite number of primes.” The design of
fuzzy logic is to build a better reasoning methodology for vague information.

If p is a proposition of the form “u is A” where A is a fuzzy set, for example, big
pressure and q is a proposition of the form “v is B” for example, small volume then one
encounters the following problem: How to define the membership function of the
fuzzy implication p → q or, equivalently, A(u) → B(v)? It is clear that (A → B)(u, v)
should be defined pointwise i.e. (A → B)(u, v) should be a function of A(u) and B(v)
since this is the approach for every other operator of fuzzy set theory, 6.

That is, there should exist a fuzzy implication operator i : X × Y → [0, 1] that allows
one to calculate the value of (A→ B)(u, v) given the values of of A(u) and B(v),

(A→ B)(u, v) = i(A(u), B(v)). (15.1)

We shall also use the notation

(A→ B)(u, v) = A(u)→ B(v) (15.2)

to represent the fuzzy set that corresponds to the implication if u is A then v is B,
where A and B are fuzzy sets on X and Y respectively.

In our interpretation A(u) is considered as the truth value of the proposition “u is
big pressure”, and B(v) is considered as the truth value of the proposition “v is small
volume”.

u is big pressure→ v is small volume ≡ A(u)→ B(v) (15.3)

It should be remarked that most of the implication operators owe their genesis to
logical identities. Of course using classical logical identities may be the wrong way
to approach the problem of designing an implication operator. This is because many
results of classical logical are not true for fuzzy set theory. For example the law of
the excluded middle states that a statement must be true or false. In fuzzy logic a
statement can be 0.7 true and 0.3 false. Remember, logic is a tool constructed for
a purpose, it woks well at that purpose, as digital technology demonstrates conclu-
sively. However analog technology allows for an infinite amount of values, and the
world is analog (light, sound, etc.)

One possible extension of material implication to implications with intermediate
truth values is

A(u)→ B(v) =

{
1 if A(u) ≤ B(v)
0 otherwise

(15.4)

This implication operator is called Standard Strict .

Example 92. Suppose that we have fuzzy sets A (representing big pressure) and B
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(representing small volume) with A(1) = 0.5→ and B(2) = 0.8 then

1 is big pressure→ 2 is small volume = A(3)→ B(1) (15.5)

= 0.5→ 0.8

= 1

However,it is easy to see that this fuzzy implication operator is not appropriate for
real-life applications. Namely,let A(2) = 0.8 and B(2) = 0.8. Then we have

A(2)→ B(2) = 0.8→ 0.8 (15.6)

= 1 (15.7)

Let us suppose that there is a small error of measurement or small rounding error
of digital computation in the value of B(2),and instead 0.8 we have to proceed with
0.7999.

Then from the definition of Standard Strict implication operator it follows that

A(2)→ B(2) = 0.8→ 0.7999 (15.8)

= 0 (15.9)

This example shows that small changes in the input can cause a big deviation in the
output, i.e., our system is very sensitive to rounding errors of digital computation and
small errors of measurement. In general, fuzzy systems are designed to be insensitive
to small changes in membership degree. This means that fuzzy systems are designed
to be robust.

A smoother extension of material implication operator can be derived from a trivial
consequence of the isomorphism between classical logic and classical set theory.
When A, B and C are classical sets in a universe X, then the following equivalence
can be demonstrated

A→ B ≡ sup {C | A ∩B ⊂ C} . (15.10)

where sup is by set inclusion.
Using the above equivalence one can define the following fuzzy implication opera-

tor, where w ∈ [0, 1]

A(u)→ B(v) = sup {w | min{A(u), w} ≤ B(v)} (15.11)

that is,

A(u)→ B(v) =

{
1 if A(u) ≤ B(v)
B(v) otherwise

(15.12)

This operator is called Gödel implication. Using the definitions of negation and union
of fuzzy subsets the material implication operator p → q = ¬p ∨ q can be extended to
fuzzy sets with the following definition

A(u)→ B(v) = max{1−A(u), B(v)} (15.13)

This operator is called Kleene-Dienes implication.
In many practical applications one uses Mamdani’s implication operator to model
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causal relationship between fuzzy variables. This operator simply takes the minimum
of truth values of fuzzy predicates

A(u)→ B(v) = min{A(u), B(v)} (15.14)

It is easy to see this is not a correct extension of material implications, because
0→ 0 yields zero while the truth table for classical logic gives the truth value of 0→ 0
as 1. However, in the knowledge-based systems that will be demonstrated in the
following chapters, rules for which the antecedent, the A part, are false are simply
ignore. This is like a rule that says “If it is raining, then open your umbrella.” If it is
not raining we don’t even think about this rule and could care less what it says to do.
That is because fuzzy logic is for application not for symbolic manipulation. Symbolic
manipulation is important, without it we would not have digital computers, however,
symbolic manipulation is not the whole of thinking, though some have claimed that it
is.

There are three important classes of fuzzy implication operators:

• s-implications: defined by
a→ b = s(c(a), b) (15.15)

where s is a t-conorm (or s-norm, hence the name, s-implication) and c is a nega-
tion operator on [0, 1]. These implications arise from the Boolean formalism

a→ b ≡ ¬a ∨ b . (15.16)

Typical examples of s-implications are the Lukasiewicz and Kleene-Dienes impli-
cations.

• R-implications: obtained by residuation of continuous t-norm t, i.e.,

a→ b = sup {c ∈ [0, 1] | t(a, b) ≤ c} (15.17)

These implications arise from the Intutionistic Logic formalism. of Eq. (15.10)
Typical examples of R–implications are the Gödel and Gaines implications.

• t-norm implications: if t is a t-norm then

a→ b = t(a, b) . (15.18)

t-norm implications are used as model of implication in many applications of
fuzzy logic. These implication operators do not verify the properties of material
implication, specifically, for any t-norm t(0, 0) = 0 but in logic 0 → 0 = 1. Typical
examples of t-norm implications are the Mamdani (a→ b = min{a, b}) and Larsen
(x→ y = xy) implications.

The most often used fuzzy implication operators are listed in the following table.
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Name Label Definition of a→ b
Early Zadeh im a→ b = max [1− a,min [a, b]]
Lukasiewicz ia a→ b = min [1, 1− a+ b]
Mamdani* imm a→ b = min [a, b]
Larsen il a→ b = ab

Standard Strict iss a→ b =

{
1 if a ≤ b
0 otherwise

Gödel ig a→ b =

{
1 if a ≤ b
b otherwise

Gaines–Rescher igr a→ b =

{
1 if a ≤ b
0 a > b

Goguen igg a→ b =

{
1 if a ≤ b
b
a otherwise

Kleene-Dienes ikd a→ b = max [1− a, b]
Reichenbach ir a→ b = 1−a+ab

Yager iy a→ b =

{
1 if a = b = 0
ba otherwise

Table 15.2.: Fuzzy implication operators.

15.1.1. Examples

Example 93. Let X = {1, 2, 3} and Y = {1, 2, 3}. Let us define two fuzzy sets, first A
(big pressure) on X

A =
0.5

1
+

0.8

2
+

1.0

3

and second B (small volume) on Y

B =
1.0

1
+

0.8

2
+

0.2

3
.

Early Zadeh implication uses the formula a→ b = max{1− a,min(a, b)} so that the truth
value for 1 is big pressure→ 1 is small volume

if 1 is A then 1 is B = A(1)→ B(1)

= 0.3→ 1.0

= max (1− 0.3,min [0.3, 1])

= 0.7 .

The truth value for

A(1)→ B(2) = 0.3→ 0.8

= max (1− 0.3,min [0.3, 0.8])

= 0.7
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and for

A(3)→ B(2) = 1.0→ 0.8

= max (1− 1.0,min [1.0, 0.8])

= 0.8

All of these results can be summarized in the following table:

Early Zadeh
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.3 0.7 0.7 0.7
A(2) 0.8 0.8 0.8 0.2
A(3) 1.0 1.0 0.8 0.2

Here are the results of applying the formulas for the other implication operators to
the fuzzy sets A and B:

Lukasiewicz
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 1.0 1.0 0.7
A(2) 0.8 1.0 1.0 0.4
A(3) 1.0 1.0 0.8 0.2

Mamdani
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 0.5 0.5 0.2
A(2) 0.8 0.8 0.8 0.2
A(3) 1.0 1.0 0.8 0.2

Larsen
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 0.5 0.5 0.2
A(2) 0.8 0.8 0.8 0.2
A(3) 1.0 1.0 0.8 0.2

Standard Strict
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 0.0 0.0 0.0
A(2) 0.8 0.0 1.0 0.0
A(3) 1.0 1.0 0.0 0.0

Godel
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 1.0 0.8 0.2
A(2) 0.8 1.0 1.0 0.2
A(3) 1.0 1.0 0.8 0.2

Goguen
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 1.0 1.0 0.4
A(2) 0.8 1.0 1.0 0.250
A(3) 1.0 1.0 0.8 0.2

Kleene-Dienes
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 1.0 0.8 0.5
A(2) 0.8 1.0 0.8 0.2
A(3) 1.0 1.0 0.8 0.2

Reichenbach
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 1.0 0.9 0.6
A(2) 0.8 1.0 0.840 0.360
A(3) 1.0 1.0 0.8 0.2
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Yager
B(1) B(2) B(3)

→ 1.0 0.8 0.2

A(1) 0.5 1.0 0.894 0.447
A(2) 0.8 1.0 0.837 0.276
A(3) 1.0 1.0 0.8 0.2

15.2. Axioms for Implication Operators

There have been attempts to characterize fuzzy implication operators axiomatically.
These attempts are very similar in flavor to those used to characterize fuzzy and, or,
and not as t–norms, t–conorms and complements. Here are the usual set of axioms
for a fuzzy implication operator.

Axiom 1 (monotonicity in first argument). a ≤ b implies that i(a, x) ≥ i(b, x).

Axiom 2 (monotonicity in second argument). a ≤ b implies that i(x, a) ≤ i(x, b).

Axiom 3 (dominance of falsity). i(0, b) = 1.

Axiom 4 (neutrality of truth). i(1, b) = b.

Axiom 5 (identity). i(a, a) = 1.

Axiom 6 (exchange). i(a, i(b, x)) ≤ i(b, i(a, x).

Axiom 7 (boundary condiition). i(a, b) = 1 if and only if a ≤ b.

Axiom 8 (contraposition). i(a, b) = i(c(b), c(a)) for some fuzzy complement operator c.

Axiom 9 (continuity). i(a, b) is a continuous function of its arguments a and b.

It is shown in Smets and Magrez (1987) that any implication operator that satis-
fies the above axiom schema can be characterized by a strictly increasing continuous
function f : [0, 1]→ [0,∞) such that f(0) = 0. Since f is strictly increasing and continu-
ous it has an inverse f−1 and the implication operator it characterizes is given by the
formula

i(a, b) = f−1 (f(1)− f(a) + f(b))

and the complement operator that satisfies Axiom (8) is given by

c(a) = f−1 (f(1)− f(a)) .

Example 94. f(x) = x. Then i(a, b) = min [1, 1− a+ b] which is the Lukasiewicz implica-
tion operator and the complement operator is c(a) = 1− a.

The above example implies that the standard implication operator of fuzzy set the-
ory should be the Łukasiewicz implication since it corresponds to the standard com-
plement operator c(a) = 1− a.

Example 95. f(x) = xw with w ∈ [−1,∞). Then i(a, b) = min
[
1, w
√

1− aw + bw
]

which
is called a pseudo-Łukasiewicz implication operator and the complement operator is
c(a) = w

√
1− aw.
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Example 96. f(x) = ln (1 + a) with pseudo-inverse

f−1(x) =

{
ex − 1 0 ≤ x ≤ ln 2

1 otherwise
.

Then

i(a, b) = min

[
1,

1− a+ 2b

1 + a

]
which is called a Sugeno Type 1 implication operator and the complement operator
is

c(a) =
1− a
1 + a

.

The axioms for implication operators presented above are not independent. For
example the axioms of identity and dominance of falsity imply the axiom of boundary
condition. However some of the proposed implication operators satisfy a restricted
subset of all the axioms. Mamdani implication, for instance, has i(0, 0) = 0, which
violates many of the axioms, yet this is probably the most applied of all the implication
operators.

15.3. Approximate Reasoning

Remember (see Sec. (3)) that the main point of logic is deduction schemes.
The first problem with developing an applied fuzzy logic is to recognize that lit-

eral interpretation of symbolic logic is not going to work. Consider for example
(A ∧ (A→ B)) → B which is the modus ponens rule written as a single logical state-
ment. In two valued logic a statement that is always true is called a tautology and
(A ∧ (A→ B)) → B is a tautology. But this expression does not truly capture a deduc-
tion scheme because it does not allow for the creation of free standing conclusions.
The conclusion of the modus ponen rule of inference in tableau form is B a single
new tautological statement.

Another problem with the tautology schemes is that we cannot directly adapt them
to fuzzy set theory. For instance, let A be a fuzzy set on X, B be a fuzzy set on Y ,
and C be a fuzzy set on Z. If we examine the left hand side of Eq. (3.9) it contains
the expression ((A→ B) ∧ (B → C)). Now by the constructions provided in Chapter
(3) A → B and B → C are represented by fuzzy sets constructed from the linguistic
variables (fuzzy sets) for A, B, and C using a selected implication operator. The
fuzzy set (or fuzzy relation) for A → B is defined upon the space X × Y and the fuzzy
set (or fuzzy relation) for B → C is defined upon the space Y × Z. The standard
interpretation of ∧ is and which is processed using an intersection operator. But we
cannot intersect the fuzzy sets A → B and B → C because they do not have the
same domain! The same problem will occur if we try to process the left hand side
of Eq. (3.5), A ∧ (A→ B), which again attempts to form the intersection of two fuzzy
sets on different domains. This can be overcome by requiring that A, B and C be
defined upon the same domain, however, this is an artificial constraint and imposes
a restriction that makes the logical system useless for application. For example, set
X = Y = Z = N120 and interpret this as admissible ages, we can have statements like
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if (x is infant) then (x is young) which really does not tell us anything about age that we
did not know from the constructions of the linguistic terms.

The aim of applied fuzzy logic is approximate reasoning an approximate reasoning
is actually more ambitious in its goals than the creation of a fuzzy set extension of
the modus ponens, modus tolens or any deduction scheme. In fuzzy set theory, as
in reality, we don’t really expect to have an exact match between the data observed
and the fuzzy atomic variable of the premise. That is, data seldom fits the ideal
model. This is a common situation in the real world, where a rule must be bent to fit
a situation is was not designed to handle. With fuzzy set theory, implication is a very
fluid notion especially when dealing with imprecise quantities.

Example 97. I am 52 years old and am in the fuzzy variable middle aged but only to a
certain membership grade say 0.86. I am also young to a certain but lesser extent (0.02
by the formula of Eq. (16.1)). I am also a bit old (0.28 by Eq. (16.2)).

We don’t want a scheme to deal with (hypothetical syllogism)

Premise Socrates is a man.

Inference rule All mean are mortal.

Deduction Socrates is a mortal.

We want a scheme to deal with

Premise This tomatoes is very red.

Inference rule If a tomato is red then the tomato is ripe.

Deduction The tomato is very ripe

or

A′

A→ B
B′

.

15.4. Fuzzy relations as logical representation

If we look at the result of any of the models of fuzzy implication, and especially at the
tables in Example (93) we can notice that I(a, b) is a fuzzy relation.

Often A → B is a fuzzy number. If A and B are fuzzy numbers and → is modeled
by an implication operator that satisfies Axioms (1 and 2) and any of (5, 7 or 4) then
A→ B is a fuzzy number.

This is going to be important because it is time to generalize logical deduction
schemes. Let us reconsider the generalized modus ponens:

A′

A→ B
B′

(15.19)
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To generalize the modus ponens we need a method to combine the fuzzy set A′ and
the fuzzy relation A → B to produce a fuzzy set B′. If we were to look through the
earlier chapters of this book, there would be one outstanding candidate. Suppose A′

has domain X and A→ B has domain X × Y . Then the sup–min composition of A′ and
A→ B will produce a fuzzy set with domain Y, that is A′ ◦ (A→ B) produces the exact
kind of fuzzy set B′ that we are looking to deduce. So the fuzzy modus ponens looks
like

B′ = A′ ◦A→ B (15.20)

Actually whenever we have a fuzzy set A′ defined on X and a fuzzy relation R defined
on X × Y then the sup–min composition can be considered as a conclusion B′ about Y .
This is the generalized modus ponens which looks like

B′ = A′ ◦R (15.21)

Example 98. Fuzzy inference
Let X = Y = N4 and define the following fuzzy sets

Premise

x1 is small—Fuzzy set representation A = 1.0
1 + 0.6

2 + 0.2
3 + 0.0

4

Inference rule x1 is approximately equal to x2 or x1 ≈ x2—Fuzzy set representation

E(x1, x2) =

 1 for 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, and 〈4, 4〉
0.5 for 〈1, 2〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉, 〈3, 4〉, and 〈4, 3〉
0 otherwise

(15.22)

Deduction

A ◦ E = [1, 0.6, 0.2, 0] ◦


1 0.5 0 0

0.5 1 0.5 0
0 0.5 1 0.5
0 0 0.5 1


= [1, 0.6, 0.5, 0.2]

So that B′ = 1.0
1 + 0.6

2 + 0.5
3 + 0.2

4 which is similar to more or less small.

15.5. Selection of implication operators

15.5.1. Mathematical considerations

Of course a good question here is which implication operator I do we use to construct
A→ B from fuzzy sets A and B. many candidates were introduced in Chapter (3).

One of the major themes of fuzzy set theory is that the operations defined behave
just like their counterparts in crisp set theory when the membership grades are re-
stricted to {0, 1} instead of [0, 1]. In Example (93) we have the fuzzy set A = 0.5

1 + 0.8
2 + 1.0

3

and the fuzzy relation R ≡ A z→ B, where z→ indicates Zadeh implication, given by the
following table:
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A
z→ B 1.0 0.8 0.2

0.3 0.7 0.7 0.7
0.8 0.8 0.8 0.2
1.0 1.0 0.8 0.2

This book has introduced sup–min composition in Chapter (8). Let us perform the
sup–min composition of A and R which produces A ◦R = 1.0

1 + 0.8
2 + 0.5

3 . But A ◦R is not
equal to B and thus does not match the modus ponens rule.

What kind of composition satisfies the modus ponens, i.e., given fuzzy sets, A and
B, and use an implication operator to construct the relation R = A → B, what must
composition look like so that we recover B: that is B = A ◦R. This question has been
partially answered in a more general form. Chapter (8) introduces max–t composition
performed with a t-norm t. The question rephrased is, given fuzzy sets A and B and
an implication operator i to construct R (x, y) = i(A(x), B(y)), what properties must i

fulfill so that B = A
t◦R?

Definition 73. Let A be a normal fuzzy set. For any continuous t-norm t and the
associated omega operator (also called the residuum, see Eq. (6.28)) ωt and let i = ωt,
that is, define i(a, b) = ωt(a, b) then

B = A
t◦R

where R (x, y) = i(A(x), B(y)). Equivalently

B(y) = sup
x∈X

t [A(x), i (A(x), B(y))] (15.23)

If the range of the membership function A for Equation (??) is [0, 1] then we have
the following result.

Definition 74. The following fuzzy implication operators satisfy (??) if the range of
A is [0, 1]

1. Gaines-Rescher

2. Godel

3. Wu.
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Name
standard

intersection

algebraic

product

bounded

difference

drastic

intersection

Early Zadeh max
[
1
2
, B

]
max

[
1
4
, B

]
B B

Lukasiewicz 1
2
(1 +B) 1

4
(1 +B)2 B B

Mamdani B B B B

Larsen B B B B

Standard Strict B B B B

Gödel B B B B

Gaines-Rescher B B B B

Goguen B
1
2 B B B

Kleene-Dienes max
[
1
2
, B

]
max

[
1
4
, B

]
B B

Reichenbach 1
2−B max

[
B, 1

4−4min(B, 12 )

]
B B

Yager B B B B

Table 15.3.: Generalized modus ponens

Proof. Let us use igr then

sup
x∈X

t [A(x), iGR (A(x), B(y))] = sup
a∈[0,1]

t [a, igr (a,B(y))]

= max

{
sup

a≤B(y)

t [A(x), igr (a,B(y))] ,

sup
a>B(y)

t [A(x), igr (a,B(y))]

}

= max

{
sup

a≤B(y)

t [A(x), 1] , sup
a>B(y)

t [A(x), 0]

}

= max

{
sup

a≤B(y)

A(x), sup
a>B(y)

0

}
= max {B(y), 0}
= B(y)

The proofs for the other two implication operators are similar.

The Table (15.3) shows the results of sup-t composition for four t-norms, standard
intersection (min), algebraic product (times), bounded difference, and drastic inter-
section.

The line of reasoning that produced Table (15.3) is that the generalized modus po-
nens, or the fuzzy modus ponens, must satisfy the traditional deduction scheme given
in Eq. (3.4) which works out after some development to produce the requirement ex-
pressed in Eq. (??).

A similar development, based this time upon the deduction scheme for the modus
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tolens Eq.(3.6) would produce the requirement

Bc = Ac t◦R

where R (x, y) = i(A(x), B(y)) and c represents a complement operator. Equivalently we
would have the expression

c (B(y)) = sup
x∈X

t [c (A(x)) , i (A(x), B(y))] (15.24)

as our requirement.
Finally developing the hypothetical syllogism, Eq. (3.8), would produce the require-

ment
RAC = RAB

t◦RBC
where RAC (x, z) = i(A(x), C(z)), RAB (x, y) = i(A(x), B(y)), and RBC (y, z) = i(B(y), C(z))
This requirement is equivalently to the following expression

i(A(x), C(z)) = sup
y∈X

t [i (A(x), B(y)) , i(B(y), C(z))] (15.25)

Tables similar to Table (15.3) could then be developed that show which combina-
tions of implication operators and t-norms satisfy Eqs. (15.24 and 15.25).

15.5.2. Heuristic considerations

Since there is no consensus on the proper implication operator in fuzzy set theory
the decision of which operator to use is simply a matter of choice. There are two
main branches of application to fuzzy logic, approximate reasoning (AR) and fuzzy
control . There are endless papers on the mathematical properties of the various
implication operators. There are also numerous papers comparing the results of
various implication operators in fuzzy controllers, where they can be compared to
ideal controllers (when an ideal controller exists).

However, data driven methods for the selection of implication operators in AR are
more difficult to obtain. That is because AR deals with problems where there has
never been suitable methods in conventional mathematics, other than Boolean logic,
even for simple situations.

15.6. Fuzzy propositions

To understand logical modifiers we must first dissect what we have already con-
structed. In this chapter we have been using A and A(x) and saying that they are
fuzzy sets, and sometimes that they are linguistic terms, which are also fuzzy sets.
In a logical statement like A → B the symbol A is called a propositions and A(x) is a
proposition about something (about x). So the fuzzy set A is really a fuzzy proposi-
tion about something (whatever the domain variable represents). The simplest type
of fuzzy proposition p has as its prototype:

p : V is G (15.26)
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where p is the proposition, V is a domain set and G is a fuzzy set on a variable v in the
domain set V . This is the type of statements this book has been using all along. The
most common example we have been using has V being the set N120 = {1, 2, 3, ...120} of
ages and G is a linguistic term like young that is modeled with a fuzzy set defined on
the set of ages. Sometimes we have been more specific and made a statement like

Mary is young.

but as a proposition this really should be read

age(Mary) is young

since it is the age of Mary that has values in the set N120. The prototype of this type
of statement looks like:

p : V(i) is G (15.27)

where I is a set of individuals or objects having attributes in the set V modeled by
fuzzy set G. The variable V is a function, V : I → V for i ∈ I, that maps individuals to
an attribute set. The prototype in Eq. (15.27) can be interpreted as

p : age(i) is young

where i is the individual Mary.

15.7. Qualified proposition

Zadeh, and others also allow for statements that are not directly modeled in classical
logic. The general form of this type of qualified prototype proposition is

p : V is G is Q . (15.28)

An example of this type of model is the following statement

(x is A) is true

15.7.1. true

We will first examine a qualified proposition such as (x is A) is true exemplified as
Mary is young is true

A proposition about an object A can be a statement about its truth. So truth must
be a fuzzy concept. Subjectively we know that this is true. Traditional logic and and
much of western philosophy has had at its heart a belief in a two valued logic, thus
the reliance on dualism and the dialectic.

What is truth? Philosophers have argued about this endlessly. But as a linguistic
term we need to first figure out the domain of linguistic terms like true. Since truth
in logic takes on the numeric values 0 and 1 it makes sense that true should be a
fuzzy set defined on [0, 1] which evaluates evidence and says how we will weight that
evidence as too its truthfulness. The idea here is that we need quite a bit of evidence
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15.7. Qualified proposition

about something before we say it is true. If a coin is flipped 100 times and comes up
heads 51 times, there is not enough evidence to say that the coin, when flipped, will
land heads up. On the other hand if a coin is flipped 100 times and comes up heads
81 times, there is enough evidence to say that the coin will land heads up. I would
certainly like to be in Vegas betting with these odds.

Our intuition about truth says that it should be a fuzzy set T such that T(0) = 0 and
T(1) = 1 Otherwise it is context dependent, depending about how we feel about the
evidence, for example T1(t) = t, T2(t) = t2, and T3(t) = 1 if t = 1 and 0 otherwise are all
trues, in fact T2 =very(T1). So the fuzzy set for a statement like x is small is very true or
“x is A is T2” which is evaluated as just A ◦T2 (x) , the (functional) composition of the
functions A and T2. If A = 1.0

1 + 0.6
2 + 0.2

3 (or A = {〈1, 1〉 , 〈2, 0.6〉 , 〈3, 0.2〉}) then x is small is
very true is the fuzzy set

A ◦T2 =
1.0

1
+

0.36

2
+

0.04

3
(15.29)

since the function T2(t) = t2 just takes a membership grade and squares it.
The logical constant false is not the complement of true, instead it is the mirror

image. That is, once we decide on a fuzzy set function T : [0, 1] → [0, 1] to model true
then the function F to model false is defined as its mirror image:

F(t) = T(1− t)

for t ∈ [0, 1].

15.7.2. Quantifiers

The two quantifiers used in classical logic are ∀ (for all) and ∃ (there exists). For
example the statement ∃x ∈ X x < 1 is read that there exists an element x of X that is
less than one. Note that this is true if X is the integers but is false if X is the natural
numbers. In approximate reasoning we generalize this completely to a quantifier Q
that makes a statement about the number of objects x that satisfy the proposition.
For example consider the statement that “this class has five young students”. This
is equivalent to the stilted English statements “students that are young number five”
or “students is young is five” which is of the form given in Eq. (15.28).

The techniques available to us allow for the conclusion of a single truth vale to the
proposition. This is the situation where the class has already started and data about
the students ages are available. In this case the age of each student can be input to
the function that models the fuzzy set young. Finally the sigma count of this fuzzy set
provides an approximate number of young students. This value is then plugged into
the fuzzy set for five to produce a final truth value.

Example 99. Let the data in the following table represent the ages of the students in
the class ACT101 be given in the Table (15.4) and assume that young is the fuzzy set
of Eq. (16.1) of Chapter (16). Further assume that five is modeled with the triangular
fuzzy set Ttri 〈3, 5, 7〉. The third column of the table gives the membership grade of the
age variable in the fuzzy set young. The sigma count of young is then

‖young‖ = 1.00 + 0.73 + 0.12 + 0.28 + 0.05 + 1.00 + 1.00 + 0.50 + 0.04 + 1.00

= 5.72
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Name Age young
Ann 21 1.00
Bob 28 0.73
Cat 38 0.12
Dee 33 0.28
Eli 46 0.05
Fan 24 1.00
Gil 22 1.00
Han 30 0.50
Ira 50 0.04
Jal 24 1.00

Table 15.4.: The ages of the students in the class ACT101.

and the membership grade of 5.72 in the triangular fuzzy set five = Ttri 〈3, 5, 7〉 is 0.64
and this is the truth vale of the statement “this class has five young students”.

Other situations, such as classes undergoing enrollment, with a partial class list
along with historical data on enrollment and age data allow only a fuzzy conclusion
as to the truth of the statement “this class has five young students.” Usually this
situation is dealt with by examining the statement “this class has n young students”
and constructing a possibility distribution on n.

15.7.3. Putting the pieces together

Approximate reasoning is applied fuzzy logic. It involves many pieces that have al-
ready been introduces in the previous chapters of this book. The first piece is a
linguistic system (Ch. 16) which uses fuzzy numbers (Ch. 7) to model terms such as
young and old. The second piece is fuzzy logic which allows for the constructions of
fuzzy sets from its component pieces, this allows us to model connectives such as
and and or. Fuzzy logic also allows the representation of logical statements such as if
Pressure big then Temperature high. Then sup-min composition allows for all the pieces
to be put together to produce conclusions.

15.8. Possibility theory

Much of the literature of fuzzy logic is cast in the language of possibility theory since
possibility theory requires that r(x1) = 1. However fuzzy logic often uses unsorted
possibility distributions on continuous domains so that r(xi) = 1 for some xi. All of
the fuzzy numbers and relations in this chapter have always had some element of
membership grade 1.

15.9. Notes

Much of this Chapter is pure Zadeh. His paper in Fuzzy logic for the management
of uncertainty Zadeh and Kacprzyk (1992) covers much of the material of this chap-
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ter and other papers in this book give an excellent overview of the application and
research areas in this field. An early collection of his papers by Yager et al. (1987a)
details many of his contributions.

Also relevant are the books Fuzzy Sets, Decision Making and Expert Systems Zim-
mermann (1987), An Introduction to Fuzzy Logic Applications in Intelligent Systems
Yager and Zadeh (1994), Fuzzy Logic A Practical Approach McNeill and Thro (1994)
and The Fuzzy Systems Handbook Cox (1994b).

Approximate reasoning based on fuzzy predicate logic was studied by many authors
besides Zadeh, including Gaines and Shaw (1986), Baldwin (1979), Baldwin and Guild
(1980), Baldwin and Pilsworth (1980), Turksen and Yao (1984), and Goguen (1979).

Elkand published an infamous paper, proving that under suitable axioms, the law
of the excluded middle had to be true, thus negating fuzzy set theory. Of course this
ignores the fact that logic only shows that axioms entail deductions. Unfortunately,
Elkand’s axioms are not even true for Łukasiewicz 3-valued logic. Łukasiewicz (1963)
demonstrates that 3-valued logic is a superset of 2-valued logic.

15.10. Homework

Let us define the universal sets X = {1, 2, 3} and Y = {a, b, c} and the fuzzy sets D, E,
F , G, and H.

D(x) =
0.5

1
+

0.5

2
+

1.0

3
(15.30)

E(x) =
0.2

1
+

0.6

2
+

0.4

3
(15.31)

F (y) =
0.3

a
+

0.7

b
+

0.9

c

G(x) =
1

x
(15.32)

H(y) =
ascii(y)− 96

3

where ascii(y) is the numerical value of the character x in the ascii table.

1. What is the implication operator generated by f(x) = ln (1 + λx) and what is its
corresponding complement operator. Name the complement operator.

2. What is the implication operator generated by f(x) = 2x
1+x and what is its corre-

sponding complement operator. Name the complement operator.

3. What is the implication operator generated by f(x) = x2 and what is its corre-
sponding complement operator. Name the complement operator.

4. Compare the results of the three questions above, especially the respective com-
plement operators. What does this tell you.
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5. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F for
each of the nine elements of X × Y if we model implication with Gougen’s impli-
cation operator? In other words, fill out the following Table where

gg→ indicates
that implication is done with igg.
E

gg→ F a b c
1
2
3

6. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F for
each of the nine elements of X × Y if we model implication with Lukasiewicz’s
implication operator?
E

a→ F a b c
1
2
3

7. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F
for each of the nine elements of X × Y if we model implication with Larsens’s
implication operator?
E

l→ F a b c
1
2
3

8. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F
for each of the nine elements of X × Y if we model implication with Godels’s
implication operator?
E

g→ F a b c
1
2
3

9. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F
for each of the nine elements of X × Y if we model implication with Mamdani’s
implication operator?
E

mm→ F a b c
1
2
3

10. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F for
each of the nine elements of X × Y if we model implication with the Standard
Strict implication operator?
E

ss→ F a b c
1
2
3
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11. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F for
each of the nine elements of X × Y if we model implication with Reichenbach’s
implication operator?
E

r→ F a b c
1
2
3

12. Given the fuzzy sets E and F (Eq. (15.31)) what is the truth value of E → F
for each of the nine elements of X × Y if we model implication with Yager’s
implication operator?
E

y→ F a b c
1
2
3

13. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H
for each of the nine elements of X × Y if we model implication with Gougen’s
implication operator? In other words, fill out the following Table where →gg

indicates that implication is done with igg.
G

gg→ H a b c
1
2
3

14. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H for
each of the nine elements of X × Y if we model implication with Lukasiewicz’s
implication operator?
G

a→ H a b c
1
2
3

15. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H
for each of the nine elements of X × Y if we model implication with Larsens’s
implication operator?
G

l→ H a b c
1
2
3

16. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H
for each of the nine elements of X × Y if we model implication with Godels’s
implication operator?
G

g→ H a b c
1
2
3
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17. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H
for each of the nine elements of X × Y if we model implication with Mamdani’s
implication operator?
G

mm→ H a b c
1
2
3

18. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H for
each of the nine elements of X × Y if we model implication with the Standard
Strict implication operator?
G

ss→ H a b c
1
2
3

19. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H for
each of the nine elements of X × Y if we model implication with Reichenbach’s
implication operator?
G

r→ H a b c
1
2
3

20. Given the fuzzy sets G and H (Eq. (15.32)) what is the truth value of G → H
for each of the nine elements of X × Y if we model implication with Yager’s
implication operator?
G

y→ H a b c
1
2
3

21. Given the fuzzy sets D, E, and F (Eqs. (15.30 and 15.31) what is the result of D ◦
E → F if we model implication with Gougen’s implication operator? Remember
that sup−min composition is performed like matrix multiplication and you should
have the tables for E →gg F from the previous chapters homework.

22. What is the result of D ◦ E → F if we model implication with Lukasiewicz’s
implication operator?

23. What is the result of D◦E → F if we model implication with Larsens’s implication
operator?

24. What is the result of D ◦ E → F if we model implication with with Godels’s
implication operator?

25. What is the result of D ◦E → F if we model implication with Mamdani’s implica-
tion operator?

26. What is the result of D ◦ E → F if we model implication with the Standard Strict
implication operator?
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15.10. Homework

27. What is the result of D ◦ E → F if we model implication with Reichenbach’s
implication operator?

28. What is the result of D ◦ E → F if we model implication with Yager’s implication
operator?

29. Given the fuzzy sets D, G, and H (Eqs. (15.30 and 15.32) what is the result of D◦
G → H if we model implication with Gougen’s implication operator? Remember
that sup−min composition is performed like matrix multiplication and you should
have the tables for G→gg H from the previous chapters homework.

30. What is the result of D ◦ G → H if we model implication with Lukasiewicz’s
implication operator?

31. What is the result of D◦G→ H if we model implication with Larsens’s implication
operator?

32. What is the result of D ◦ G → H if we model implication with with Godels’s
implication operator?

33. What is the result of D ◦G→ H if we model implication with Mamdani’s implica-
tion operator?

34. What is the result of D ◦G→ H if we model implication with the Standard Strict
implication operator?

35. What is the result of D ◦ G → H if we model implication with Reichenbach’s
implication operator?

36. What is the result of D ◦G→ H if we model implication with Yager’s implication
operator?

37. Which of the above results seems most reasonable?
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16. Linguistic variables

16.1. Complexity -vs- Precision

If a concept is sufficiently simplified we can measure it with precision. For example,
my weight is 155 lbs. If it is artificial we can count it exactly. For example my wallet
contains $23.

The real world is complex. How do I measure my health? What about my wealth?
Do I know the value of everything I own at this moment. How do we measure well–
being?

The real is hard to count. How many stars are there in the heavens? Is your night
vision better or worse than mine? Is it cloudy out? You have binoculars! Is that
cheating?

Many of the great philosophers have argued this problem under various guises.
Ontology is the study of knowledge. Poetics is the study of symbols?

How can we have absolute knowledge? It is very difficult when you think about it.
For example my weight is really 154 lbs. 13 oz. and I am sure there are devices that
can calculate my weight with much greater precision than what is given by the figure
“154 lbs. 13 oz”.

Bertram Russell came right out and said that symbolic logic has nothing to do
with our everyday existence. Mathematics is also meaningless. Computers simply
manipulate symbols in a preprogrammed paths.

Cybernetics

Cybernetics, which encompasses and is sometimes studied under the names of

• Adaptive systems

• Artificial intelligence

• Artificial life

• Chaos theory

• Decision science

• Information science

• Man-machine studies

• Neural networks

• Operations research

• Optimization methods
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16. Linguistic variables

• Symbiotics

• Systems science

deals with the problems of understanding human beings and how they interfacing
with machines. It especially has come to mean; how human beings interact with
computer technology.

Ergonomics is the study of designing machines to fit humanity. A good example of
this is the can opener. Twenty years ago, the can opener was made of two thin arms of
metal, a fixed cutting blade mounted on the top arm and a gear that rotated the can.
It was difficult to grasp, often caused spills and the blade could easily contaminate
the food. A modern can opener has two wide, rubber-padded handles and a rotating
cutting blade. It doesn’t slip or jam. The can seldom falls onto the floor. This is good
ergonomics. It shows great understanding of the mechanics of can opening and the
mechanics of the human hand, and the correct way that these two systems interact.
A modern hammer might contain a tuning fork to dampen the vibrations that are
transmitted to the hand and wrist of the hammerer.

Unfortunately the human hand, and the hammer are both much easier to under-
stand than the human brain and the computer. We are not very good at designing
technology that fits our brain. Computer programming is difficult because it is un-
natural. Logic is unnatural, humans rationalize, not reason.

Human don’t understand much. Who would like to try and completely explain the
workings of the can opener. How much torque is involved. Where does the plastic
come from? Who makes these can openers. Are there left handed versions available?
What kind of metal is the cutting wheel made of?

Few people would like to get up in front of class and categorically defend their
knowledge on any subject. Not me. Not about anything!

We don’t understand how a cat works. We don’t understand how we work. We
especially don’t understand how our brains work. Maybe this is why psychology is
one of the most popular majors for college students. Most of us don’t understand
how our car, computer, microwave, etc. works. Even those who understand how a
computer works don’t really understand it. It depends on quantum physics which is
statistical and only deals in probabilities not absolute knowledge.

Traditional areas for cybernetic problems include

• Artificial intelligence—making the computer work like the brain.

• Control—making machines react to their environment.

• Heuristics—translating the rules of thumb that humans use into something ma-
chines can understand.

• Pattern Recognition—making machines learn from example, the way human’s
learn

• Prediction—getting computers to extrapolate trends in the data.

• Risk analysis—getting machines to dealing with contradictory problems.

• Syzygy—gestalts, the problem of parts and wholes. Making big problems into a
bunch of little problems that we can solve and reintegrating the results.

248



16.1. Complexity -vs- Precision

These fields have gained many adherents because of the failure of traditional meth-
ods to tackle the problems posed by large and complex systems. This dilemma has
been exacerbated by the rise of computer technology.

Here is a simple example. A weather researcher runs a program to simulate con-
vection currents in the air. The results are interesting so he desires to rerun a short
segment of the simulation. Since the simulations takes a lot of time and computer
power he feeds in the data vales of the system at the time he is interested in studying
off of a printout. When he runs the simulation it is completely different from the
original simulation. The reason for this disparity is that the computer printout had
the data to eight decimal places while the computer had much greater internal pre-
cision. But there is even more to the story. The researcher then experimented with
how the precision of the data representation altered the weather forecast. A C/C++
program could use float or double as the data type of its variables. Two programs,
whose only difference is the precision of the data type, give very different forecasts
for the weather after the first few hours. This was the beginning of the study of
Chaos. This is why the weather man can never predict the weather next week. To do
this he would have to have a computer with infinite precision, and he would have to
measure all the data from the real world with infinite precision. Wherever he chops
off a measurement, 10 decimal places, 20 decimal places, etc., will change the long
range weather forecast.

A traditional solution method for a complex problem would involve the following
steps:

1. Define a mathematical model.

2. Gather data.

3. Simulate/solve the model to the required precision.

4. Analyze the results.

Sometimes steps one and two are reversed. The data are gathered and the data
suggests a proper mathematical model. However the data often can be used to fit
more than on mathematical model. Anyone who has studied algorithms in computer
science knows that there is more than one way to accomplish many goals, such as
sorting the data. The size and type of the data may make one particular type of
sorting program more efficient in application. For example quicksort is, on average,
one of the fastest sorting methods for real numbers, but when quicksort is slow, it can
be very slow. Heapsort is, on average, very slightly slower than quicksort, however,
the heapsort always runs at exactly the same speed, so it is very reliable.

The problems with the traditional solution method for complex problems include:

1. No mathematical model fits the data or many mathematical models fit and they
give contradictory results.

2. The mathematical model is difficult to simulate with present or foreseeable com-
puter limitations.

3. The mathematical model is impossible to solve.

4. Data is difficult to get, contradictory, vague or just plain nonexistent.
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5. Chaos is everywhere in complex systems, predictability will then depend on mea-
surement precision.

6. The pieces don’t fit together (this is what syzygy deals with).

16.2. The black box approach

There are a lot of different methodologies kicking around at the beginning of the
21st century that attempt to deal with some or all of the problems with traditional
methods of solving complex and/or vague problems. These methodologies include:

1. Genetic algorithms

2. Neural networks

3. Simulated annealing

4. Random search

5. Fuzzy sets

6. Rough sets

7. Probability

8. Random sets

One thing many of these fields have in common is the black box approach. They don’t
claim to explain the phenomena, just to be able to make deductions or conclusions
about them. Their attitude is; given enough I/O data, can we build a simulation model
without understanding anything about how the system works? At first this may seem
unreasonable, yet if we think about it, our brains have some kind of simulation of
a car inside them that works sufficiently well to allow us to drive home, without
any precise measurement data inside our brains, and this does not worry us. In fact
biological methods are the inspiration of many of the modern cybernetics approaches.
Thus cybernetics is a two way street, it use biologically inspired methods and one of
its major goals is the explanation of biological experiments. The brain is trying to
understand itself.

Statistical methods were the traditional approach to solve problems in the face
of uncertainty. Uncertainty was translated as randomness by the researchers who
developed probability. This method does work if the uncertainty in the system is
sufficiently regular, i.e., random. One could also try to model it as a finite state
machine or transition diagram.

However, not everything that is uncertain seems to fit the probabilistic mold. Sup-
pose someone asks you, “How did you like that restaurant?” Now you liked parts of
it and disliked parts of it, so there in uncertainty in your mind. You might say “I liked
it 50%” but this is unlikely. It is more likely you will say something like “It was OK.”
This is not a probabilistic statement. It is an imprecise statement.

What is needed to deal with complex and imprecise systems is a methodology that
can augment or process vague and incomplete input data to get a desirable out-
put? In most cases it is impossible to get an exact match between the results of our
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16.2. The black box approach

Figure 16.1.: Black box.

methodology and the real world situation. Output may only be able to steer us in the
right direction. Is an “OK” restaurant good enough for tonight’s meal if it is close?
How about if the restaurant is close and inexpensive?

How do humans deal with the complex, vague, and incomplete data which the
real world throws at us in ever larger and faster gulps? We use language. We use
abstraction, simplification and symbols to reason about complex things. The symbols
are usually words and in human language words are not precise, at least not very
often. “two” is a precise word, however it refers to an idealized abstract entity. “tree”
is an imprecise word, it refers to an abstraction of the real world that is not precisely
defined. The word “tree” includes palm trees, pine trees, and peach trees, which have
some similarities and some differences.

Philosophers argue these problems using big words like ontology, epistemology,
and “the thing in itself” as if the thing were ever anything else. Of course the thing
is something else, its what we perceive it is, which is not necessarily precise and
objective. Anybody who has ever fallen in love or trusted someone else has learned
that there are many perceptions that in long run do not match reality.

It is at this point in a philosophy class that everyone starts to argue about what the
words mean. The answer to what the words means is: “It means exactly what I said.”
except that I do not always know what I am saying.

young

The word young is a linguistic term and like most linguistic term it is not precise.
This is common to all languages. They evolve. Words change their meaning over

time. Awful meant full of awe or awesome.
Slang changes very fast. Look at the word rap. cool means acceptable. slime means

unprincipled. In slang bad means very good.
As humans we understand the word cat without ever having seen the collection of

all cats in the world.
We have generalized from a collection of specific instances a meaning.
Depending on the time and place cat may include domesticated and wild cats. It

may mean just the common house cat or it may include all felines.
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16. Linguistic variables

Figure 16.2.: A graph of the membership function of the linguistic variable young.

We use cat without knowing the anatomy, absolute dimensions or defining charac-
teristics of cat.

Even if we were the worlds expert in cat the human races ignorance of biology and
neurobiology would leave us sorely lacking in a complete understanding of cat.

This bothers us not at all. We all use the word cat to mean what we want it to mean.
Most everyone has an opinion about everything and most people understand abso-

lutely nothing, and work hard to keep it that way.

16.2.1. Fuzzy sets and natural language

Human language is a powerful tool. Some think it was one of the two basic tools
that caused the evolution of modern humanity (along with hands). Language is in-
stinctive in human behavior, a child does not have to be taught a language, they will
absorb whatever language they are in contact with, whether it is English or Man-
darin. If many languages are spoken, such as in a port city, the children inevitably
evolve a polyglot language, a creole. However, before fuzzy set theory, the only useful
mathematical models for human language was logical and logic is severely limited in
application. Fuzzy set theory however is uniquely applicable in the study and manip-
ulation of language based systems, linguistic systems.

Let the universe U be the positive real numbers, U = R+. Define a fuzzy set Y with
membership grade given by

Y (u) =

{
1.0 0 ≤ u ≤ 20[

1 +
(
u−20
10

)2]−1
u > 20

(16.1)

for any u ∈ U The fuzzy set Y is a decreasing s–shaped fuzzy set.

Remark 10. Y (u) is s-shaped fuzzy number if we abandon the bounded support re-
quirement of fuzzy numbers.

The graph of the function Y looks like:
If we think of u ∈ U as an age then Y is the fuzzy set that represents the linguistic

variable young.
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Figure 16.3.: A graph of the membership function of the linguistic variable old.

Define a fuzzy set O (which is an increasing s–shaped fuzzy set)

O(u) =

{ [
1 +

(
u−60
10

)2]−1
0 < u ≤ 60

1.0 u > 60
(16.2)

The graph of this function indicates that O is the fuzzy set that represents the
linguistic variable old.

16.3. Linguistic System

Both these fuzzy sets Y –young and O–old are instances of term’s whose subject is
age. Any fuzzy set defined upon the universe U of ages is a an exemplification or a
statement about a group of ages. All of this theory was worked out by Zadeh many
years ago Bellman and Zadeh (1970), Zadeh (1973). In Zadeh’s work a linguistic
variable is the quintuple 〈X , T (X ), U,G,M〉 where:

• X—Age, a linguistic variable,

• U— The numerical ages from 0 to ∞, the universal set,

• T—young, adolescent, infant, old, etc., Terms associated with X ,

• G—The rules for generating a phrases or name about age, X , like very old, some-
what old, etc., a grammar,

• M—A method of generating a fuzzy set M(X ) for the terms in T and for all
expressions generated by the grammar G. For example, the term young on the
linguistic variable X is assigned the fuzzy set Y , whose membership function
(also called its compatibility) is given in Eq. (16.1).

The difference between U and X is that U is just a set of numbers, and could repre-
sent temperature in a different linguistic system. The linguistic set X tells us how
the values in U are interpreted. In this linguistic system the numbers in U are inter-
preted as ages in years. In a different linguistic system the numbers in U could be
interpreted as temperature in degrees Kelvin.
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16. Linguistic variables

essentially virtually very
sort of rather not

technically almost much
kind of regular fairly
actually mostly pretty

loosely speaking in essence barely
strictly basically reasonably
roughly principally extremely

in a sense lower than indeed
relatively higher than really
practically particularly more or less
somewhat largely pseudo-

exceptionally for the most part nominally
anything but strictly speaking literally

often especially typically
damn

Table 16.1.: Linguistic Hedges.

16.3.1. Hedges

Already introduced were words like very or somewhat that alter meaning. How about
phrases like young to middle aged. Zadeh calls them hedges Zadeh (1972a). Like when
we hedge a bet.

Already introduced were words like very or somewhat that alter meaning.
How about phrases like young to middle aged.
Zadeh calls them hedges. Like when we hedge a bet. In the English language

they are part of the grammar that helps us be more precise about the age (or other
subject) that we are discussing. These hedges need to be added to the grammar G.
Table 16.1 contains a list of some of the common hedges of the English language.

How do we represent hedges?
Is there any similarity between the transformation from young to very young and the

transformation from old to very old. I would certainly think so and so did Zadeh. He
defined hedges in terms of operators on the fuzzy set membership functions. Here is
a short list of some common operators:

CONCENTRATION—con(A)(u) = A2(u)

DILATION—dil(A)(u) = A1/2(u)

NORMALIZATION—norm(A)(u) = A(u)
maxu∈U A(u)

INTENSIFICATION—int(A)(u) =

{
A2(u) A(u) < 0.5
A1/2(u) A(u) ≥ 0.5

Traditionally

very A = con(A)

more or less A = dil(A)
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Figure 16.4.: Graphs of the membership functions of some linguistic terms.

plus A = A1.25

slightly A = int[plus(A) and not very(A)]

Besides the hedging operators we are using the fuzzy set connective and or intersec-
tion and not or complement. As we saw in the previous chapter these can be modeled
with any t-norm and any complement operator. All of the hedge operations, con, dil,
int, and plus map a membership grade of one to one, i.e. con(1) = 1, dil(1) = 1, int(1) = 1,
plus(1) = 1.

Example 100. The fuzzy set for the term young is given by Eq. (16.1). The equation
for the term very young would be a concentration of the equation for the term young.
Hence its equation would be con(Y )(u) = Y 2(u) or

Y 2(u) =

{
1.0 0 ≤ u ≤ 25[

1 +
(
u−25

5

)2]−2
u > 25

(16.3)

16.3.2. Grammar

If you are have ever had to learn a programming language then you already have
some experience with a formal grammar. When learning C you are first introduced
to simple arithmetic statements like

x=x+10; (16.4)

then to conditional statements such as

if(i<5) x=x+10; (16.5)

and finally to repetition in the form of

for(i=0;i<10;i++) x=x+10; (16.6)

Then these pieces; statements, conditions, and loops, are combined in many ways to
produce complex functionality. The rules of combination are the rules of the grammar
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of C/C++. For example if(i<5) x=x+10; has as one of its components the simple
statement x=x+10;

The most common way to write a grammar is something called Banach Normal
Form..The grammar is defined recursively. This means that it is specified by rules of
construction that can be applies in any combination and in any order.

Fir the linguistic grammars we are interested in here the basic building blocks are
terms defined on linguistic variables. The symbol “::=” translates as “is defined to be”
and the symbol “|” separates two exclusive choices. Here is an example of a grammar
G1 designed to handle the language of the ages.
<Primary Term> ::=young | old | infant | adolescent

<Hedge> ::= very | slightly | more or less | plus

<Range Phrase> ::= <Hedged Primary> to <Hedged Primary>
<Hedged Primary>::= <Hedge><Primary> | <Primary>

Example 101. The word young is a primary term and the word very is a hedge hence
the rule <Hedged Primary>::= <Hedge><Primary> allows us to construct the prase
very young in our grammar.

16.3.3. Method

We have all the pieces now to precisely define the linguistic system 〈X , T (X ), U,G,M〉 .

• X is Age.

• U is the universal set {0, 1, 2, 3, ..., 99, 100}.

• T is the set {young, old, infant, adolescent}

• G is the grammar
<Primary Term> ::=young | old | infant | adolescent

<Hedge> ::= very | slightly | more or less | plus

<Range Phrase> ::= <Hedged Primary> to <Hedged Primary>
<Hedged Primary>::= <Hedge><Primary> | <Primary>

• M consists of the fuzzy sets associated with the primary terms

M(young)(u) = Y (u) (16.7)

M(old)(u) = O(u) (16.8)

M(infant)(u) = I(u) (16.9)

M(adolescent)(u) = A(u) . (16.10)

These primary terms have the explicit fuzzy sets:
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Figure 16.5.: Default granulation of a domain.

Y (u) =

{
1.0 0 ≤ u ≤ 20[

1 +
(
u−20
10

)2]−1
u > 20

(16.11)

O(u) =

{ [
1 +

(
u−60
10

)2]−1
0 < u ≤ 60

1.0 u > 60
(16.12)

I(u) =

{
1.0 0 ≤ u ≤ 5[

1 + (u− 5)
2
]−1

u > 5
(16.13)

A(u) =


[
1 + (u− 12)

2
]−1

0 < u ≤ 12

1.0 12 < u < 18[
1 + (u− 18)

2
]−1

u ≥ 18

(16.14)

The grammar rule <Hedged Primary>::= <Hedge><Primary> | <Primary> involves
two cases. In the case <Hedged Primary>::= <Primary> then nothing is done to
the mapped function. In the case <Hedged Primary>::= <Hedge><Primary> the
mapping follows the rules Traditionally

very A = con(A)

more or less A = dil(A)

plus A = A1.25

slightly A = int[plus(A) and not very(A)]

Finally the grammar rule <Range Phrase> ::= <Hedged Primary> to <Hedged Primary>
is handled by taking the union of the fuzzy sets so that very young to more or less young
would be the union of the fuzzy sets con(Y ) = Y 2 and dil(Y ) = Y 1/2.

16.3.4. Granularity

Fig. (16.6) is a graph of both the young function Y and old function O on a single graph.
If we are talking about age and only have the terms young and old we see that a lot
of ages that are not included in these two categories to any great extent; the middle
ages from 20 to 30. If age is going to be the topic of discussion then our vocabulary
should have terms that parcel up the age domain in overlapping pieces. We need to
introduce the fuzzy number middle as seen in Fig. (16.7).
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Figure 16.6.: The linguistic terms young and old.

Defining fuzzy subsets over the domain of a variable is referred to as granulation,
granularity, or variable granulation, – in contrast to the division of a domain set into
crisp subsets which is called quantization.

• Granulation results in the grouping of objects into imprecise clusters of fuzzy
granules,

• The objects forming a granule are drawn together by similarity,

• Granulation can be seen as a form of fuzzy data compression,

Often granulation is obtained manually through expert interviews. If expert knowl-
edge on a domain is not available, an automatic granulation approach can be used.
Usually the domain is divided into an odd number of granules. Often the names are
generic such as; NL: negative large, NM : negative medium, NS: negative small, Z:
zero, PS: positive small, PM : positive medium, and PL: positive large. If we di-
vide age into three groups we would have PS for positive small age, PM for positive
medium age, and PL for positive large age. This section uses the subjective and more
descriptive terms young = PS, middle = MP , and old = LP . Fig (16.5) shows an example
of default granulation on a domain.

The design and construction of fuzzy sets is the topic of Chapter 9. For now we
will assume that the fuzzy numbers represent our subjective opinion of the correct
shape.

Using fuzzy sets allows us to incorporate the fact that no sharp boundaries exist
between age groups. The fuzzy sets for old and young overlap to a certain extent.

In the Fig. (16.4) the granulation is fine at the lower end of the age spectrum where
infant, and adolescent subdivide young and course at the upper end where everyone who
is not young is just old. This might be the way a teenager sees the world, so granularity
is strongly problem dependant. Both Fig. (16.4) and Fig. (16.7) are different granu-
lations of the same domain set U, which further illustrates the difference between U,
the numbers, and X , age, viewed linguistically.

16.4. Notes

Linguistic systems will for the foundation of Approximate Reasoning (Chapter 15.3)
and Fuzzy Control (Chapter 17).
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Figure 16.7.: The linguistic terms young, middle, and old.

Zadeh writes excellent explanations for both the theory and application of linguistic
systems in Zadeh (1987a), and Zadeh (1987b). The book Computing with words
Wang (2001) is a current resource in the applications of linguistic systems. Other
applications are in Wenstop (1980), Oden (1984).

The major book on possibility theory is Dubois and Prade (1988).

16.5. Homework

Let H (in feet) for height be

H = {0, 1, 2, 3, 4, 5, 6, 7, 8.9.10} , (16.15)

and let B (in number of burritos) be

B = {0, 1, 2, 3, 4, 5, 6, 7, 8} . (16.16)

1. Nanotechnology is a physical science, the construction of very tiny devices.
Fuzzy sets are a non-physical technology. Search for a new non-physical tech-
nology that is not on the list at the beginning of this chapter. Describe the
technology and its application.

2. What are some appropriate hedges when talking about height, and what are the
appropriate operators to represent these hedges

3. Specify the grammar for talking about height.

4. Use all the rules in your grammar to generate a complex statement and show its
mapped fuzzy set. Graph the mapped fuzzy set.

5. Define the fuzzy sets F for famished and H for HUNGRY on B.

6. What are some appropriate hedges when talking about burritos, and what are
the appropriate operators to represent these hedges

7. Specify the grammar for talking about burritos.
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8. Use all the rules in your grammar to generate a complex statement and show its
mapped fuzzy set. Graph the mapped fuzzy set.

9. What is your major. In your major what are the important topics of discussion?
Are any of these topics amenable to the construction of a Zadeh type fuzzy gram-
mar linguistic systems? How would you go about this.

10. What is your hobby. In your hobby what are the important topics of discus-
sion? Are any of these topics amenable to the construction of a Zadeh type fuzzy
grammar linguistic systems? How would you go about this.

11. Critique Zadeh’s linguistic system. Would you have done something different or
even labeled things differently.
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17. Fuzzy Control

17.1. Introduction

Much of the recent growth of interest in the field of fuzzy sets can be attributed to the
success of one particular application: fuzzy control. While the strategy was outlined
in Zadeh’s paper “Outline of a new approach to the analysis of complex systems and
decision processes” Zadeh (1973) the actual application was pioneered by Mamdani
Mamdani and Baaklini (1975)Mamdani (1976)Mamdani (1977) and his students in
the late 1970s.

Traditional control mechanisms for complex systems require advanced engineer-
ing mathematics, including the solutions of difficult differential and/or integral equa-
tions. Even worse, traditional solutions are often unsatisfactory or impossible to
obtain. An excellent example of this is the recent success in Japan by Sugeno of
constructing a controller for a model helicopter. This feat has not been matched by
any of the traditional differential/integral controllers. The equations of motion are
extremely complex and the aerodynamic interactions are difficult to express. Yet
humans fly helicopters and it appears that soon fuzzy controllers will be able to as
well.

Fuzzy controllers are (comparatively) easy to build. Fuzzy controllers, unlike neu-
ral network methods (addressed online in the Neural Network Chapter http://duck.
creighton.edu/Fuzzy/), produce results that are understandable to humans. They can
incorporate expert driven and data driven information. Fuzzy controllers can also be
designed to adapt to changing conditions.

• Fuzzy controllers are simple to build and operate. They are based on the prin-
ciples of linguistic systems and approximate reasoning discussed in Chapter
(15.3). The operations used by a fuzzy controller consist of addition, subtraction,
multiplication, division, maximum and minimum. Simple arithmetic operations
mean that fuzzy controllers are very fast in application.

• Fuzzy controllers are easy to understand because they directly translates the
actions of a human controller into simple deterministic rules; the familiar if A
then B rules of fuzzy logic. These rules can be read back from the fuzzy con-
troller, however it was designed, so that a human can understand what a fuzzy
controller does. Thus they are based on translations of .

• Fuzzy controllers can adapt the heuristic rules we use daily to control machines
such as cars and stoves. A car driving controller can be based on human rules
like: “If you are going a bit too fast then apply the brakes lightly.” A fuzzy con-
troller for a factory process could use a database of past performance to build a
collection of rules. A fuzzy controller for a helicopter can combine both heuristic
and data driven methodologies.
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17. Fuzzy Control

Figure 17.1.: A typical feedback control system.

• Fuzzy controllers are adaptable because the functions that represent the heuris-
tic rules are easy to adjust using an adaptive methodology (such as a neural
network or genetic algorithms).

It is important to understand that fuzzy sets provides a method for representing the
inherent imprecision of the human-machine interaction, but that fuzzy sets them-
selves are precise mathematical functions. Probabilities present information about
random processes but the probabilities are not random. Fuzzy sets represent inde-
terminate information but fuzzy sets are deterministic.

17.2. The black box approach

Given enough I/O data can we build a model without understanding anything about
the boxes internal workings? Can we use this model to augment the input to get a
desired output? This is the problem of CONTROL .

17.2.1. Keep on trucking

When an expert driver is trying to teach a new trainee how to back up a sixteen
wheeled tractor trailer filled with large heavy machinery to a loading dock he does
not give the trainee a set of complex multivariate differential equations.

∂2y

∂x2
= x sin y − 1

2
x2 + k

∂y

∂x
(17.1)

Instead he gives the trainee a set of heuristic rules such as, “If the truck is close to
the dock drive slowly” and “If the angle is large turn the steering wheel hard.” Fuzzy
logic can translate these heuristic if-then rules concurrently in terms of a standard
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17.2. The black box approach

Figure 17.2.: Does this interest you?

modeling object — the fuzzy number and a standard operating system — approximate
reasoning.

17.2.2. Control from Approximate reasoning

When we want to control a dam we might have a rule like “If the water level is too
high open up the outlet valve a little.” We might also have a reading like the water
is rather high. What is needed is a numerical value for the control mechanism like
“open the valve by turning the wheel an additional five degrees.” There are two
problems with the approximate reasoning scheme of the previous section. The input
reading for a controller are crisp, such as the water is at 831 centimeters, and do
not exactly match the A part of the inference rule system of approximate reasoning.
Second, we do not have a connective for “implies” as we do for “and” and “or”.

If we remember the previous chapters discussion about implication in traditional
logical and think about the dam problem we see that the inference we want to draw
is nothing at all like a deduction scheme from formal logic. For example, the table
for logical implication in Table (15.1) , → says that if A is false then A → B is always
true no matter what value B has. If we tried to apply this line of reasoning to the dam
situation we might reason that since the water level is low it just won’t matter what
we do.

We are not interested in anything like this. We are not interested in a system based
on truth, absolute knowledge and inflexible rules.

Another problem with traditional logic is its linearity. In the real world the data
may have properties in common with many of the different heuristic rules that an
expert uses to reason out the correct actions in a difficult situation. The human brain
works in parallel and weighs the alternatives. When a chef looks in the refrigera-
tor and examines then contents, the list of available ingredients may match a lot of
recipes. The chef must use a complex set of rules to balance freshness of ingredients,
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17. Fuzzy Control

Figure 17.3.: The truck’s angle and offset will be used as input to control the truck.
The output will be the change in steering angle.

flavor balance, textural and color considerations, and the general mood of the day in
deciding what to prepare. This is why most people just get take–out, such decisions
are just inherently difficult. Building a system to figure out what to make for din-
ner would be extremely difficult. Entering the data of available items and quantities
would take a lot of time, more time then it would take to make dinner, and how does
one enter mood information. The computer does not understand that a Valentines day
meal might be measured by a different standard, that ignores caloric overload and
pampers romantic expectations. Measuring freshness, color and texture is another
difficulty. There are also additional considerations like a “never steak two days in a
row, except sometimes” rules to ensure variety. Then again, maybe you like to have
the same meal every day and are afraid of surprises. Little Katie won’t eat anything
but peanut butter and jelly sandwiches or chicken nuggets. Family meal planning is
a complicated system!

The simple black and white problems, like chess, are either solved or could be
solved with sufficient computational power. All the grey problems, like biological
systems, have proved much more difficult. Reductionism has trouble dealing with
emergent properties. There is nothing in the nature of three line segments that would
lead one to predict that a triangle in the plane will always contain 180 degrees. There
is nothing special about a molecule like cytosine except that it forms long chains (as
do a lot of other molecules) and can create a mechanism that replicate itself, hence
life as we know it (cytosine is one of the four components of DNA, our genes.) Logic
has trouble dealing with imprecision, with values that are not one and zero, true and
false.
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17.3. Fuzzy logic controllers

Figure (17.3) shows a simplified image of a truck backing up to a loading dock. Train-
ing a new driver with rules such as “If the angle of the trucks major axis is 125◦ and
the truck is offset −25 meters left of the dock then turn the steering wheel so the tires
are 15◦ from the track axis” will probably bring the national economy to a screeching
halt; it will almost certainly fail to get the truck up against the building’s loading
dock. This rule is applicable for a split second, and human reflexes are probably
not fast enough to implement it at the critical moment. The cognitive overload of
remembering the 360 times 100 (angles versus offset) different steering angle rules
necessary does not even take into account what we do if the angle is π

7 . If we add
in the velocity of the truck as a third input parameter the crisp rule based approach
becomes infeasible.

Yet almost everyone can learn to drive, (though everyone who drives soon realizes
that almost everyone else is doing it badly). The rules we use are linguistic and few
in number. The rules for human drivers are something like:

“If you are a little left of center and angled away to the left then turn the
wheel a little to the left”

“If you are a lot right of center and angled down to the left then turn the
wheel a little to the right.”

“If you are going too fast then slow down.”

Human rules do not specify the numeric ranges. These rules are learned by way
of examples and negative feedback. Each human, based on there own reflexes, driv-
ing style, and vehicle type determine an optimum numeric range for the linguistic
variables wheel left, truck right, etc. Think of how used to your own car you are. When
you get in it to drive home after a late class you do not have to look for anything,
like where the lights or windshield wipers are, something you would check out in a
borrowed or rented car (I hope). There are also more than one rule to cover a situa-
tion, like driving in the rain, where standard driving behavior rules are altered by the
slippery road driving rules. And somehow the brain fires all these rules in parallel
and arrives at a proper conclusion and acts upon this conclusion.

Fuzzy control is just an approximate reasoning system with multiple, usually over-
lapping, rules. These rules are called the rulebase. There are some differences
though. In fuzzy control the implication arrow will be modeled in a completely new.
An implication like A → B is meant as a production rule. A control value (the feed-
back in Fig. (17.2)) is an input value which is fed to the antecedent of the implication,
which is A. Based on how well the input value fits the antecedent A the controller
does B, that is, the more the input is A the more we do B. This fits with intuition. A
rule like “If the tomato is red then it is ripe.” is used when harvesting tomatoes. The
more red the color is (the input) the riper it is, and the better it will taste and the
more likely we are to pick it.

You build a fuzzy logic controller (FLC) by mimicking the human controller. The
speed of computer processing ensures that even a bad mimicry of the human rules
produces fairly good result since the computer is correcting the actions quickly. A
good controller relies on feedback, Fig. (17.1). A good fuzzy controller design pro-
duces controllers comparable to the best achieved by traditional methods. Addition-
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offset
Number Tag English Fuzzy Number

A1 LE left Tp [−50,−50,−40,−15]
A2 LC left center Tr [−20,−10, 0]
A3 CE center Tr [−5, 0, 5]
A4 RC right center Tr [0, 10, 20]
A5 RI right Tp [16, 40, 50, 50]

angle
Number Tag English Fuzzy Number

B1 RB right big Tr [−100,−45, 10]
B2 RU right upper Tr [−10, 35, 60]
B3 RV right vertical Tr [45, 67.5, 90]
B4 VE vertical Tr [80, 90, 100]
B5 LV left vertical Tr [90, 112.5, 135]
B6 LU left upper Tr [120, 155, 190]
B7 LB left big Tr [170, 225, 280]

steer
Number Tag English Fuzzy Number

C1 NB negative big Tr [−30,−30,−15]
C2 NM negative medium Tr [−25,−15,−5]
C3 NS negative small Tr [−12,−6, 0]
C4 ZE zero Tr [−5, 0, 5]
C5 PS positive small Tr [0, 6, 12]
C6 PM positive medium Tr [5, 15, 25]
C7 PB positive big Tr [15, 30, 30]

Table 17.1.: Definition of offset, angle, and steer fuzzy numbers.

ally fuzzy controllers are much easier and faster to design. Finally, in some cases
traditional controllers have been too difficult to design. An example of this is an au-
topilot for a helicopter. The physical rules of flight for a helicopter are so complex
that a physical solution is plagued with boundary value and chaos problems. A fuzzy
controller is based on the experience of successful helicopter pilots.

The horizontal offset between the dock and center of the truck, designated x, will
be one of the two inputs to our prototype fuzzy controller. The second input will be
y between the perpendicular y-axis and the trucks backing up direction (you have to
back up to a loading dock) the . If the dock is in the center of a 100 meter yard then
the offset can range from −50 to 50 meters as the truck moves from left to right.

The granularity for the offset will be five and the granularity for angle will be seven
. This gives a total of thirty-five rules for our controller.

When we say that the granularity for offset will be five this means that we will
partition (in the fuzzy sense) the angle domain into seven overlapping fuzzy sets.
Offset, x, is the distance in the x–dimension from the truck to the loading dock. Offset
has a range from −50 to 50. The tag, English name and fuzzy numbers assigned to the
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Figure 17.4.: A graph of the five fuzzy numbers LE, LC, CE, RC, and RI representing
offset distance.

Figure 17.5.: A graph of the seven fuzzy numbers LB, LU , LV , ZE, RV , RU , and RB
that partition angle.

five pieces of offset are given in Table (17.1.offset). The situation is illustrated in Fig.
(17.4).

The granularity of angle is seven. The angle is measures as the deviation from
straight up, thus the deviation angle y has a range that extends from −100 to 280
(angles are measure counterclockwise). The tag, English name and fuzzy numbers
assigned to the seven pieces of angle are given in Table (17.1.angle). The situation
is illustrated in Fig. (17.5).

The output will be the change in steering angle, designated z, to be applied by the
driver to the steering wheel. The controller will use thirty–five rules to control the
steering of the truck. They will approximate the heuristic rules of a human driver
and, hopefully, produce a controller that mimics the actions of a human driver.

The granularity of steer is seven. Steer, z, is the change in angle of the steering
wheel of the truck and has a range from −30 to 30, left to right, (its counterclock-
wise, steering right decreases the angle). The tag, English name and fuzzy numbers
assigned to the five pieces of steer are given in Table (17.1.steer). The situation is
illustrated in Fig. (17.6).

It will take a couple of steps to transform a heuristic rule into a fuzzy rule. Let us
take the first rule from a human standpoint. “If you are way left and pointed a little
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Figure 17.6.: A graph of the seven fuzzy numbers NB, NM , NS, ZE, PS, PM and PB
that partition steering angle.

left (like this — ↖) then steer left.”

“If you are pointed a little left (like this-↖ ) (17.2)

and located somewhat left

then turn the steering wheel to the left.”

The first step has already been done, we have used granulation to construct the
fuzzy sets on the domain sets X = [−50, 50] for offset, Y = [−100, 280] for angle, and
Z = [−30, 30] for steer.

Now English sentences leave a lot to be desired as far as order and precision are
concerned. To convert this English language rule to a fuzzy rule we have to convert
it into a standard form. The standard form we will use is

Ai ∧Bj → Ck (17.3)

where Ai is a fuzzy set on X, Bj is a fuzzy set on Y , and Ck is a fuzzy set on Z. This
form translates as

“if offset is Ai and angle is Bj then steer Ck .”

The English phrase (17.2) has offset first and then angle second but our generic
form is given by Eq. 17.3 which does offset and then angle, or X before Y . . It also
does not have an exact match with the linguistic terms of our granulations. So let us
decide that “way left” in (17.2) is associated with the offset fuzzy set LE or left,

A1 LE left Tp [−50,−50,−40,−15]

and that “pointed a little left” is associated with the angle fuzzy set LV or left vertical

B5 LV left vertical Tr [140, 110, 90] .

Finally we associate with the prase “steer left” the steer fuzzy set PM or positive
medium

C6 PM positive medium Tr [5, 15, 25]
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and the complete English phrase in (17.2) becomes the fuzzy rule

“If you are pointed a little left (like this-↖ ) (17.4)

and located somewhat left

then turn the steering wheel to the left.”

“if offset is left and angle is left vertical then steer positive medium.” (17.5)

if offset is LE and angle is LVthensteer PM

A1 ∧B5 → C6 .

The fuzzy controller we are going to design will need to have a decision for any
possible pairing of the input angle and input offset. This means there are thirty–five
rules necessary for the fuzzy controller to handle any acceptable input values in the
domain Y ×X (angle by offset). The best way to present them is as a table. The fuzzy
controller TRUCK is defined in Table 17.2.

Truck B1 B2 B3 B4 B5 B6 B7

Rules RB RU RV VE LV LU LB

A1 LE NS PS PM PM PM PB PB
A2 LC NM NS PS PM PM PB PB
A3 CE NM NM NS ZE PS PM PM
A4 RC NB NB NM NM NS PS PM
A5 RI NB NB NM NM NM NS PS

Truck B1 B2 B3 B4 B5 B6 B7

Rules RB RU RV VE LV LU LB

A1 LE C3 C5 C6 C5 C6 C7 C7

A2 LC C2 C3 C4 C5 C6 C7 C7

A3 CE C2 C2 C3 C4 C5 C6 C6

A4 RC C1 C1 C2 C3 C4 C5 C6

A5 RI C1 C1 C2 C2 C2 C3 C5

Table 17.2.: Truck fuzzy controller rulebase

Now that we have finished designing the rulebase it is time to learn how the rule-
base is used to control the truck.

In Figure (17.3) the offset is x = −25 meters an the observed angle of deviation
is y = 125 degrees. This is the observed data value, the input to the fuzzy control
system. If we examine the the fuzzy sets Ai, see Table (17.1), we see that x = −25 is
in the support of the fuzzy set A1 which is LE or left. If we examine the fuzzy sets Bj,
see Table (17.1.angle), we see that y = 125 is in the support of the fuzzy set B5 which
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is LM or left medium. This means that the rule that is fired is

if offset is LE and angle is LMthensteer PM

A1 ∧B5 → C6 .

since C6 or PM is the output of the appropriate rule from Table (17.2). The fuzzy
relation for A1 ∧ B5 is modeled as a fuzzy set whose membership function at 〈x, y〉 is
just the minimum of A1 (x) and B5 (y). Pictorially it looks like the pyramid in Figure
(17.12). However there is no need to actually construct this pyramid. The height of
the pyramid at 〈x, y〉 can be calculated when it is needed and only at the points where
it is needed. The values ωx = A1 (x) and ωy = B5 (y) are called the compatibility indexes
of y and x respectively. The membership grade of 〈x, y〉 in the pyramid A2 ∧ B1 is just
the minimum of these two compatibility indexes. The resultant minimum value is the
firing value ω.

ω = min[ωx, ωy]

= min [A1 (y) , B5 (x)]

= A1 (x) ∧B2(y)

= [A1 ∧B2] (x, y)

Now Zadeh and Mamdani in their original design of a fuzzy logic controller used
as the result of a single implication a truncated version of the fuzzy set C6. This
truncated version of C6 has as its membership function the formula

C1,5 (z) = min [ω1,5, C6 (z)]

= ω1,5 ∧ C6 (z)

where the subscript 1, 5 indicates that this compatibility index. ω1,5. is the result of
firing fuzzy sets A1 and B5. This process is illustrated in Fig. (17.7).

Example 102. Since we have input from Fig. (17.3) of 〈−25, 125〉 we can calculate
the actual membership grades of A1(−25) and B5(125) to produce the compatibility
indexes of ωx = 2

5 and ωy = 4
9 and conclude that the firing value of 〈x, y〉 = 〈−25, 125〉 is

ω = min
[
2
5 ,

4
9

]
= 0.4. Thus the resultant fuzzy set C1,5 looks like C6 with 60% of the top

chopped off, see Fig. (17.7).

Further examination of the rules and membership grades allows us to note that
y = 125 is also an member of the fuzzy set B6 interpreted as LU or left upper. This
means that in addition to the rule A1 ∧ B5 → C6 being fired the rule A1 ∧ B6 → C7 is
fired. The result of the firing A1 ∧B6 will be another truncated fuzzy set.

Example 103. Since we have input from Fig. (17.3) of 〈−25, 125〉 we can calculate
the actual membership grades of A1(−25) and B6(125) to produce the compatibility
indexes of ωx = 2

5 and ωy = 1
7 and conclude that the firing value of 〈x, y〉 = 〈−25, 125〉 is

ω = min
[
2
5 ,

1
7

]
= 0.14. Thus the resultant fuzzy set C1,6 looks like C7 with 6

7 of the top
chopped off, see Fig. (17.8).

Both of the rules that are fired by 〈x, y〉 , or are compatible with 〈x, y〉 , are equally
important. The fuzzy controller, like a human being, amalgamates all of the pertinent
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Figure 17.7.: A and B imply C in a fuzzy controller.

Figure 17.8.: A second if-then rule fired in parallel with the rule in Fig. (17.7).

rules. It does this by uniting (in the sense of a fuzzy set union) all of the truncated
conclusions, in this case the truncated conclusions are the fuzz sets C1,5 and C1,6.
Amalgamating the two truncated fuzzy sets with the max operator to produce the
result fuzzy set C. This is the final result, the irregular fuzzy set C(z) seen in figure
(17.10).

The last step in the fuzzy controller is to produce a single real number to use as the
control value; the number of degrees that the steering angle should be altered from
its present position.

When fuzzy control was first proposed by Mamdani, he used the z value with the
largest resultant membership value in the fuzzy set C as the control value. If, as in
this case, the result achieves a maximum membership value over an interval [z1, z2],
then Mamdani proposed to take the average of the endpoints to produce a control
value z = z1+z2

2 .
The fuzzy set C1,6 is a little bit taller than C1,5 at its maximum. It achieves this max-

imum of 0.4 over the range c(0.6) = 9 to c(0.6) = 21. When we average these two values
we get the control value zc = 15, the actual numeric output of the fuzzy controller.
The steering angle is therefore changed from its present value to 15 degrees left of
vertical, which turns the wheels to the left. The process of determining a single nu-
meric value from a fuzzy set is called defuzzification. The Mamdani controller uses
MOM, mean of maxima.
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Figure 17.9.: Two rules are fired, producing two truncated triangles.

Figure 17.10.: Final fuzzy set result for steering.

We then use an electronic sensor (or other method) to get the next pair of input
values 〈x, y〉 and repeat the process until the truck arrives at the dock.

The entire process of a fuzzy controller is illustrated in Fig. (17.11). The input data
〈−25, 125〉 fires two different rules in parallel. The amalgamated fuzzy set in the lower
right is defuzzified to produce the control value zc = 15

17.3.1. Fuzzy control equations

We finally have all the pieces for the calculation of the control fuzzy set C.
Each input data pair 〈x0, y0〉 is represented by an impulse fuzzy set, A′ ∧B′ = Ti[x0]∧

Ti[y0]. This impulse fuzzy set is just a single spike in the two dimensional X × Y
plane at 〈x0, y0〉. This input membership function fires all the rules that make up
the controller, but the result will be zero if the input 〈x0, y0〉 is not in the support of
the antecedent A ∧ B of the firing rule. Using the standard operations of max-min
composition and implication as cylindric closure we calculate the result of firing a
single rule [Ai ∧Bj ]→ Ck. The result is Ci,j = [A′ ∧B′] ◦ [Ai ∧Bj ]→ Ck, which upon a lot
of algebraic manipulation produces
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Ci,j(z) = [A′(x) ∧B′(y)] ◦ [Ai(x) ∧Bj(y)]→ Ck(z) (17.6)

= sup
x∈X,y∈Y

min [A′(x) ∧B′(y), Ai(x) ∧Bj(y)→ Ck(z)] (17.7)

= sup
x∈X,y∈Y

min [A′(x) ∧B′(y),min[Ai(x) ∧Bj(y), Ck(z)]] (17.8)

= sup
x∈X,y∈Y

min [A′(x) ∧B′(y), Ai(x) ∧Bj(y), Ck(z)] (17.9)

= min

[
sup
x∈X

[A′(x), Ai(x)], sup
y∈Y

[B′(y), B(y)], Ck(z)

]
(17.10)

= sup
x∈X

[A′(x), Ai(x)] ∧ sup
y∈Y

[B′(y), Bj(y)] ∧ Ck(z) (17.11)

In this case we have that A′ and B′ are impulse fuzzy numbers, A′ = Ti[x0] and
B′ = Ti[y0], so that

Ci,j = [Ti[xo] ∧ Ti[y0]] ◦ [Ai ∧Bj ]→ Ck

and the final result will be

Ci,j(z) = sup
x∈X

[Ti[xo](x), Ai(x)] ∧ sup
x∈X

[Ti[y0](y), Bj(y)] ∧ Ck(z)

= A(x0) ∧B(y0) ∧ Ck(z)

since Ti[x0](x) is zero everywhere but x = x0 and Ti[y0](y) is zero everywhere but y = y0.
The result Ci,j is simply Ck truncated at the height min [A(x0), B(y0)], as previously
stated. Since more than one rule may be fired, the ultimate result, C is the union
(max) of the individual outputs of each fired rule:

C =
⋃
i,j

[A′ ∧B′] ◦ [Ai ∧Bj ]→ Ck

where i, j ranges over all the rules in the rulebase, which we assume has size m× n.

17.3.2. Multiple inputs and outputs

The fuzzy controller outlined above is simplistic and may not do a very good job. In
general, when backing a truck up to a dock we use more information than the angle
of deviation from the perpendicular and the offset and control more quantities than
just the steering wheel. For example we might include as an additional input the y–
distance from the dock. If the truck is farther out from the dock then a small steering
correction will have a longer time to take affect. Additionally, most drivers control a
car primarily through the steering wheel and the brake/accelerator pedals. Thus we
might have a system that contains rules that look like:

Ai ∧Bj ∧ Ck → Fs ∧Gt (17.12)

where Ai is a fuzzy set that expresses a constraint on the dock angle, Bj is a constraint
on the offset, Ck is a constraint on the velocity, and the result is the action Fs on
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Figure 17.11.: Mamdani fuzzy logic controller.
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Figure 17.12.: The fuzzy set A ∧B.

steering angle and Gt on acceleration (the pedals). It should be apparent that a fuzzy
controller can have many antecedents as well as consequences.

The first simplification comes about when we realize that fuzzy controllers are small
and fast. Instead of having one rule Ai ∧ Bj ∧ Ck → Fs ∧Gt with multiple consequents
it is usually conceptually easier to build two parallel controllers, one for the steering
wheel and one for the pedals: Ai ∧Bj ∧ Ck → Fs and Ai ∧Bj ∧ Ck → Gt.

17.3.3. Control surface

We can get a good idea of the behavior of the fuzzy logic controller we have con-
structed by looking at its control surface. A control surface is a 3D result of the
output of the controller for each 〈x, y〉 input pair. Fig. (17.13) shows the control sur-
face for the Truck Backer-upper described in this chapter. A fuzzy controller can be
thought of as a means of approximating a function f(x, y) that is the mathematically
correct equation for the control value z = f(x, y) given inputs x and y.

17.4. Center of gravity

When engineers, who are not so wedded to theory, examined Mamdani’s controller
design, there were two points that the noticed. The first was that the min operation
used in truncating the then fuzzy sets was not as appealing computationally as using
ωi as a scaling factor.

Secondly, the max of membership defuzzification methodology seemed to throw
away a lot of available information, as well as produce results that were not continu-
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Figure 17.13.: Mamdani control surface.

ous (a small change in input angle could create a large change in the control value.)
Looking at figure (17.10) an engineer would naturally choose as a typical value the
center of gravity. The center of gravity has very nice mathematical properties as well
as a simple physical explanation. The center of gravity, COG, of figure (17.10) is the
balance point, the z value where we would place a fulcrum or pivot and the fuzzy set
considered as a solid flat sheet of metal would then balance.

COG(C) =

´ +30

−30 z C(z) dz´ +30

−30 C(z) dz
= 16.37◦ (17.13)

In general, if f : X → R is any function defined on a domain interval X = [a, b] then
the x coordinate of the center of gravity of the area between f and the x-axis is given
by the formula

xCOG =

´ b
a
x f(x) dx´ b

a
f(x) dx

. (17.14)

Here we use the variable x since this is the traditional label of the horizontal axis.
However in fuzzy control, the horizontal axis of the resultant control set will be the
domain set of the then fuzzy sets. In the truck example we used Z for the steering
angle.

For those who do not remember calculus fondly Eq. (17.14) may appear intimidat-
ing. However, for triangular and trapezoidal fuzzy numbers we can produce simple
algebraic results. For triangular fuzzy numbers Tr [a,m, b] the COG is a+m+b

3 . For

276



17.4. Center of gravity

Number Parameters COG
Triangular Tr [a,m, b] a+m+b

3

Trapezoidal Tp [a, l, r, b] b2+rb+r2−l2−al−a2
3(b+r−l−a)

Table 17.3.: The Center of Gravity formulas for triangular and trapezoidal fuzzy num-
bers

trapezoidal fuzzy numbers Tp [a, l, r, b] the COG is b2+rb+r2−l2−al−a2
3(b+r−l−a) .

Example 104. For the fuzzy number A1 or LE for left with formula Tp [−50,−50,−40,−15]
the COG is

COG (A1) = COG(Tp [−50,−50,−40,−15]) (17.15)

=
(−15)

2
+ (−15 · −40) + (−40)

2 − (−50)
2 − (−50 · −50)− (−50)

2

3 (−15− 40 + 50 + 50)
(17.16)

= −37.592 (17.17)

17.4.1. Why COG

The simplicity of the methodology sketched above is the basis of fuzzy control’s suc-
cess. The most complicated part of the procedure is the COG integrations, as given
by Eq. (17.14). There are three reasons that engineers prefer COG to the original
Mamdani method. The reasons are:

1. COG uses all of the output fuzzy sets of all the rules fired by a given input set.

2. The COG of two objects is the weighted sum of the COG of each object.

3. The COG of each output fuzzy set can be calculated before the fuzzy controller
is run on input data.

Here is a fact from basic physics. If a planet P1 has mass m1 and COG x1 and another
planet P2 has mass m2 at COG x2 then the center of gravity of the combined system is

m1x1 +m2x2
m1 +m2

. (17.18)

This a simple formula which provides a fast method of calculating the COG of the
union of the result fuzzy sets. Fast COG (FCOG) is not as precise as pure COG, since
it ignores the overlap of the result fuzzy sets, but in applications of control, speed
and the ability to correctly arrive at the target are more important than precision.
When you drive home, you do not worry whether or not you are exactly in the middle
of your driving lane, only that you are somewhere near the middle of your driving
lane.

If a fuzzy controller is designed using the FCOG defuzzification method then the
picture in Fig. (17.11) is not accurate. Instead of truncating the result fuzzy sets
at the compatibility index ω, COG scales the fuzzy sets by the value ω. In one sense
the difference between the resulting fuzzy set is the difference between using the
t-norms min and algebraic product.
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17. Fuzzy Control

Figure 17.14.: COG fuzzy logic controller.
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17.5. Notes

The situation is illustrated in Fig. (17.14).
What this means for the design and implementation of a fuzzy controllers is, cal-

culate the COG of all the output fuzzy sets Ck before we run the fuzzy controller and
store them in a table. Suppose fuzzy number C1 has COG c1, fuzzy number C2 has
COG c2, etc. Further suppose that is there are rules Ai1 ∧ Bj1 → C1 and Ai2 ∧ Bj2 → C2

that are both fired by the input vector 〈x0, y0〉. If the compatibility index of firing
Ai1 ∧Bj1 with input 〈x0, y0〉 is ω1 and the the compatibility index of firing Ai2 ∧Bj2 with
input 〈x0, y0〉 is ω2, then the resultant control value is

zc =
ω1c1 + ω2c2
ω1 + ω2

(17.19)

if these are the only two rules that are fired by the input pair 〈x0, y0〉. This means
that defuzzification takes two multiplications, two additions and one division after
the values c1 and c2 are retrieved from a lookup table.

For the fuzzy controller illustrated in this chapter at most four fuzzy rules can have
positive compatibility index. This is because each granulation has at most two fuzzy
sets that overlap at any domain value. Since there are two inputs and each input can
have two compatible fuzzy sets there are 2× 2 = 4 fired rules.

Example 105. The COGs of C6 and C7 are 15 and 25 respectively. Assume the input
to the controller is 〈−25, 125〉. We have already calculates that ω1 = 0.56 and ω2 = 0.6
for these input values. The fast COG defuzzification control value is

zc =
ω1c1 + ω2c2
ω1 + ω2

=
0.56 · 25 + 0.6 · 15

0.56 + 0.6

= 17.63 .

When we use fast COG the control surface for the Truck Backer-upper is illustrated
in Fig (17.15).

17.5. Notes

While Zadeh created the linguistic systems of approximate reasoning and pretty
much spelled out how a fuzzy controller should work in papers such as Zadeh (1973)Zadeh
(1972b) Mamdani Mamdani and Assilian (1975) gets the credit of the first paper that
describes a theoretical fuzzy controller.

Fuzzy set theory was suffering from one of the periodic AI implosions, and re-
searchers in the west did not see the point of fuzzy controllers. The Japanese seized
upon the technology, which made a major impression when it was implemented in
the Sendai subway system. Subsequently the Japanese incorporated FLCs into their
cars and electronics, and made a huge profit.

There are innumerable books on fuzzy control, but none better at the introductory
level, I hope, than the one you are reading. At an advanced level Nguyen et al.
(1995) has some good papers and your best bet is to browse the journals Fuzzy Sets
and Systems and IEEE Transactions on Fuzzy Systems.
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17. Fuzzy Control

Figure 17.15.: COG control surface.

Figure 17.16.: Resultant fuzzy sets using: left – cutting and right – scaling.
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17.6. Homework

17.6. Homework

Given the fuzzy controller described in Sec. (17.2).

1. What is the COG of the seven fuzzy numbers in Fig. (17.6).

2. What is the COG of the five fuzzy numbers in Fig. (17.4).

3. What is the COG of the seven fuzzy numbers in Fig. (17.5).

4. What is the compatibility index with an input of 〈x, y〉 = 〈10,−5◦〉 of each of the
rules this input triggers in Table 17.2.

5. Graph the resultant fuzzy sets of the controller upon input of 〈x, y〉 = 〈10,−5◦〉 if
truncation is used.

6. Graph the resultant fuzzy sets of the controller upon input of 〈x, y〉 = 〈10,−5◦〉 if
scaling is used.

7. Defuzzify the result of (5) using Mamdani’s original method.

8. Suppose that the truck is moving one meter per second. What is the approximate
location of the truck one second after the fuzzy controller alters the steering
angle if we use the defuzzification value of the previous question?

9. Defuzzify the result of (6) using the COG method.

10. Suppose that the truck is moving one meter per second. What is the approximate
location of the truck one second after the fuzzy controller alters the steering
angle if we use the defuzzification value of the previous question?

11. What is the compatibility index with an input of 〈x, y〉 = 〈−10, 100◦〉 of each of the
rules this input triggers.

12. Graph the resultant fuzzy sets of the controller upon input of 〈x, y〉 = 〈−10, 100◦〉
if truncation is used.

13. Graph the resultant fuzzy sets of the controller upon input of 〈x, y〉 = 〈−10, 100◦〉
if scaling is used.

14. Defuzzify the result of (5) using Mamdani’s original method.

15. Suppose that the truck is moving one meter per second. What is the approximate
location of the truck one second after the fuzzy controller alters the steering
angle if we use the defuzzification value of the previous question?

16. Defuzzify the result of (6) using the COG method.

17. Suppose that the truck is moving one meter per second. What is the approximate
location of the truck one second after the fuzzy controller alters the steering
angle if we use the defuzzification value of the previous question?

18. Look at the resultant fuzzy sets in Fig. 17.11, reproduced in the left of Fig.
(17.16). What values besides the MOM could be used for defuzzification.

19. Look at the resultant fuzzy sets in Fig. 17.14, reproduced in the left of Fig.
(17.16).. What values besides the COG could be used for defuzzification.
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18. Fuzzy Logic Controllers

18.1. Variations on a theme by Mamdani

Designing fuzzy logic controllers (FLC) is not difficult. Building optimal fuzzy logic
controllers, with sufficient speed or accuracy, is a bit more difficult. Fuzzy controllers
have proven to be so effective that they are in the great majority of consumer elec-
tronic devices. For example, the dryer in my basement has a moisture sensor, and
lowers the temperature of the hot air as the clothes approach the optimal dryness,
this prevents shrinkage. This process is almost certainly controlled by a FLC, but this
is never stated because in America, the words fuzzy logic, like fuzzy math, are con-
sidered pejorative. However, fuzzy logic brakes make driving a car a more pleasant
experience. FLCs help land the space shuttle and aim the gun of an Abrams tank.

The success of FLCs has caused a lot of researchers to examine, and tweak the
methods used in their construction and execution. There are four major components
of a FLC. FLC construction consists of granulation and rulebase formation. FLC
execution consists of an inference engine and defuzzification.

18.2. The six components

Granulation Determining the domain sets, the shapes, and the quantity, of input and
output fuzzy sets. This step results in fuzzification.

Fuzzification The construction of fuzzy numbers associated with linguistic tags to rep-
resent the potential data input and control output values.

Rulebase Constructing firing rules with fuzzy numbers and logical connectives (˜,∨,∧,→)
to represent the knowledge base.

Operators Determining the appropriate fuzzy operators to model each logical con-
nective.

Inference Transform the input data into fuzzy numbers. Compose the observed in-
put data fuzzy number with the set of implication in the rulebase to derive a
conclusion fuzzy set. This is also called firing the rules.

Defuzzification Determining a single control value from conclusion fuzzy set.

There are thousands of products out there with fuzzy controllers. These include the
autofocus cameras, motioncontrol camcorders, washing machines that sense mois-
ture, elevators that stop smoothly, and automobile transmission and braking systems.
Fuzzy controllers are a part of everyday life.
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18. Fuzzy Logic Controllers

Figure 18.1.: A cart with an inverted pendulum.

Example 106. This example gives a hint of how to do create an inverted pendulum
controller the traditional way. If you don’t make it through this physics problem that
is okay. The point of this example is the complexity of the setup of a controller for a
very uninteresting problem for the fuzzy engineer. The fuzzy engineer can discard the
physics and deal with it in a human way. However, for very interesting problem like
flying a space shuttle or a helicopter the physical description becomes important..

The cart with an inverted pendulum, shown in Fig. (18.1) is "bumped" with an
impulse force, F as illustrated in Fig. (18.2).

For this example, let’s assume that the physical constants and variables are defined
as follows:
M mass of the cart M = 0.5 (kg),

m mass of the pendulum m = 0.2 (kg),
b friction of the cart b = 0.1 ( N

m/sec ),
I inertia of the pendulum I = 0.006 (kg·m2),
l length to the pendulum’s center of mass l = 0.3 (m),
F impulse force applied to cart,
θ angle of the pendulum, and
x x-axis location.
The cart has a small motor that can be used to move the carts left or right. For this

problem, we are only interested in the control of the pendulum’s position. Therefore,
none of the design criteria deal with the cart’s position. The system starts at equilib-
rium, and experiences an impulse force F of 1 N. The pendulum should return to its
equilibrium upright position as a result of the motors efforts.

If we were physics, engineering or applied mathematicians then we could perform
the following analysis.

Let N be the horizontal force of the pendulum. The sum of all the forces on the cart
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18.2. The six components

Figure 18.2.: Parameters used in the PID controller of an inverted pendulum,

in the horizontal dimension is given by:

Mẍ+ bẋ+N = F

where ẋ and ẍ represent the velocity and acceleration (first and second derivatives of
the horizontal distance x).

Summing the forces in the pendulum of the cart in the horizontal direction, you get
the following equation of motion:

N = mẍ+mlθ̈ cos θ +mlθ̈2 sin θ

where θ̈ represent the angular acceleration (second derivatives of the angle θ).

If you substitute this equation into the first equation, you get the first equation of
motion for this system:

(M +m) ẍ+ bẋ+mẍ+mlθ̈ cos θ +mlθ̈2 sin θ = F

To get the second equation of motion, sum the forces perpendicular to the pendu-
lum and calculate the following equation:(

I +ml2
)
θ̈ +mgl sin θ = −mlẍ cos θ

These two equations, along with the initial conditions form a system of differential
equations. Now that the problem has been set up it so that it can be solved or sim-
ulated on a computer to create a PID – Proportional-Integral-Derivative – controller
for the servomotor.

Fortunately we do not need to remember any of this physics. We instead will use
two very simple human rules, also called heuristics. Rule 1: if the pendulum is going
left push right and vice versa. Rule 2: if the pendulum is speeding up push harder.
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18. Fuzzy Logic Controllers

variable
Number Tag English Fuzzy Number

1 NB negative big Trapeziodal
2 NM negative medium Triangular
3 NS negative small Triangular
4 ZE zero Triangular
5 PS positive small Triangular
6 PM positive medium Triangular
7 PB positive big Trapeziodal

Table 18.1.: Generic captions for seven control fuzzy numbers.

18.3. Granulation

18.3.1. Domain definition

Though the first step, domain specification, is not in any sense fuzzy, it is essential
to problem solving. In the truck example of the previous chapter, the angle input
ranges over the full 360◦ that the truck might be oriented. However, the interval Y
does not start at 0◦ and end at 360◦. That is because the target for the trucks angle
is straight up, 90◦ and it turns out that it is desirable to have the target in the middle
of the input range, though it is not necessary. The FLC designer needs to consider
what happens if the angle is straight down, which could be −90◦ or 270◦ depending
on your viewpoint. The rules need to cover this situation and it turns out that the
best practical solution is to set Y = [−100◦, 280] so that the controller can view it either
way and have a rule that covers each situation. The idea is, if the angle is 269◦ and
increases a little to 273◦ the controller does not convert this to −87◦ and use a different
strategy (rule in the rulebase) that causes the truck to jerk back and forth.

Example (106) shows the type of mathematics and physics that a typical engineer
needs to design a traditional PID controller. Fig. (18.3) shows a mechanical system
by ADWIN corporation for designing and testing fuzzy controllers. The ADWIN sys-
tem dispenses with the cart and uses a servomotor that directly applies torque to the
pendulum. The controller, after firing and defuzzyfying the rules, eventually applies
a voltage to the servomotor (which can also be seen on the cart in Fig. (18.1)) that
attempts to get the pendulum to a vertical position.

Let us consider the design of a controller for a fixed inverted pendulum. One of
the wonderful things about fuzzy controller design is happy ignorance. We are going
to ignore almost everything about physics and mathematics and focus on two very
generic quantities, error, e, and rate of error change, ∆e. The goal of the inverted
pendulum FLC is to drive e and ∆e to zero.

The inverted pendulum FLC will have two inputs and one output. The output is the
correction factor or the feedback. Straight up, in radians, is π

2 and this is the target
location, we want the error e to be zero when the pendulum is straight up at location
π
2 . The target of ∆e, the rate of change of the error, will also be zero when the error is
constant. In physical terms e is the angular deviation and ∆e is the angular velocity.
When both are zero the pendulum is straight up and not moving.

Assumes that the controller runs continuously and can produce input samples at
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18.3. Granulation

Figure 18.3.: Adwin corporations commercial fuzzy controller system.

the rate of once per second. At each clock tick the mechanical sensor needs to read
the current pendulum angle θ. The value of the error variable e is the deviation from
vertical. The error is then the distance form θ to π

2

e =
π

2
− θ . (18.1)

The difference between two readings divided by the time period is the angular
velocity ∆θ. Since we wisely set the time period to one second we do not need to
bother to divide by one, though technically we should do this to get the physical unit
of radians per second for ∆θ = ∆e.

We do not need a sensor for the rate of change of error ∆e. Initially set ∆e to zero.
As soon as we get the second reading we use very simple calculation, ∆e is equal to
the current value of e minus the previous value of e :

∆e = e− elast
= θ − θlast .

Example 107. Suppose that you buy a ten pound turkey. You estimate that this
turkey will cook in five hours at 450◦. Your goal is to have the turkey at the correct
internal temperature when the guests are ready for dinner. There is no need to alter
the temperature for the first four hours. It is only in the last hour that we tweak
the oven settings based on the current internal temperature of the turkey (they good
ones come with an embedded thermometer) and how fast it seems to be cooking.
The current internal temperature minus the goal internal temperature is e and the
difference between the last two values of e is ∆e.

Similar to a human, a FLC has course rules for great deviations and fine rules for
small deviations.

This thinking influences the ranges of the variables e and ∆e and the granulation.
If either the location error e or velocity error is ∆e is a large value then all we can do
to balance the pole is crank the servomotor to full positive or negative voltage and
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18. Fuzzy Logic Controllers

hope the servomotor is strong enough to overcome the pendulums momentum. It is
close to the target values of location error e = 0 and velocity error ∆e = 0 where we
need to use fine control to stabilize the inverted pendulum at the vertical position.

The domain of the error e will be numerically E =
[
−π4 ,

π
4

]
but remember that the

clockwise orientation of angles make this right to left. The domain range for ∆e is the
same numerically ∆E =

[
−π4 ,

π
4

]
but this is physically the angular velocity, also right

to left.
The output of the controller is the DC current to the servomotor. According to the

package the range is ±10v. So the control variable z will have domain Z = [−10, 10].

18.3.2. Shape determination

Chapter (7) gave many different shape prototypes for fuzzy numbers and s-shaped
fuzzy sets. Most FLC applications use four basic types of fuzzy numbers, impulse,
triangular, trapezoidal, and bell. Bell shaped fuzzy number are primarily used when
calculus will be involved in the design of the fuzzy controller. Bell shaped fuzzy
number are differentiable and integrable, whereas triangular fuzzy numbers are not
differentiable since they have corners.

The simplest and fastest method of designing a fuzzy controller is to just use equally
spaced triangular fuzzy numbers. like in Fig. (18.4). Better results usually come
from converting the fuzzy numbers at the extreme ends of the interval to trapezoidal
fuzzy numbers, as illustrated in Fig. (18.5). The best results come from the situation
illustrated in Fig. (18.6) where the fuzzy numbers at the target (the center in this
case) are narrower, allowing for fine control near the target.

In the design of our fuzzy logic controller for the inverted pendulum, we will use
the triangular numbers in the center of the domain intervals, trapezoidal numbers at
the edges of the domain interval, and impulse fuzzy numbers for the input data.

18.3.3. Number

In FLC design the rule of thumb is that an odd number of fuzzy sets will be spread
across each of the variables domain intervals. In general, the larger the domain, the
more fuzzy sets that are needed. However, there are demonstrations of a FLC for
the inverted pendulum that divides each of the domain sets, E, ∆E, and Z, into three
pieces. This FLC works fine, it is just not very efficient.

For some reason, a granulation of five, seven, or nine pieces seems serviceable in
most applications. To make life easier we will use seven fuzzy sets for each of the
three domain intervals. Since, by clever design, all of the intervals are symmetric
about zero we will use identical generic linguistic tags for each of the three variables
e, ∆e, and z. They are given in Table (18.1).

18.3.4. Fuzzification

Various empirical experiments in FLC design have shown that the granules of each
domain interval should have a 10% − 20% overlap. This is a heuristic rule and can be
used to produce a fast first approximation of an optimal controller. In addition, we
have already decided to use seven fuzzy sets, with generic names. The central five
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18.4. Rulebase

error
Number Tag English Fuzzy Number

E1 NB negative big Tp
[
−π2 ,−

π
2 ,−

3π
8 ,−

9π
32

]
E2 NM negative medium Tr

[
− 5π

16 ,−
π
4 ,−

3π
16

]
E3 NS negative small Tr

[
− 7π

32 ,−
π
8 ,−

3π
32

]
E4 ZE zero Tr

[
−π8 , 0,

π
8

]
E5 PS positive small Tr

[
3π
32 ,

π
8 ,

7π
32

]
E6 PM positive medium Tr

[
3π
16 ,

π
4 ,

5π
16

]
E7 PB positive big Tp

[
9π
32 ,

3π
8 ,

π
2 ,

π
2

]
change in error

Number Tag English Fuzzy Number

∆E1 NB negative big Tp
[
−π2 ,−

π
2 ,−

3π
8 ,−

9π
32

]
∆E2 NM negative medium Tr

[
− 5π

16 ,−
π
4 ,−

3π
16

]
∆E3 NS negative small Tr

[
− 7π

32 ,−
π
8 ,−

3π
32

]
∆E4 ZE zero Tr

[
−π8 , 0,

π
8

]
∆E5 PS positive small Tr

[
3π
32 ,

π
8 ,

7π
32

]
∆E6 PM positive medium Tr

[
3π
16 ,

π
4 ,

5π
16

]
∆E7 PB positive big Tp

[
9π
32 ,

3π
8 ,

π
2 ,

π
2

]
control

Number Tag English Fuzzy Number

C1 NB negative big Tp [−10,−10,−8,−8]
C2 NM negative medium Tr [−8,−4,−6]
C3 NS negative small Tr [−5,−3,−1]
C4 ZE zero Tr [−2, 0, 2]
C5 PS positive small Tr [1, 3, 5]
C6 PM positive medium Tr [4, 6, 8]
C7 PB positive big Tp [7, 8, 10.10]

Table 18.2.: Definition of error, delta-error, and control fuzzy numbers.

fuzzy numbers will be triangular and the extreme fuzzy numbers will be trapezoidal.
Using this strategy and a little hand arithmetic produces the granulations for E, ∆E,
and Z given in Table (18.2).

A typical approach to granulation will produce the following:

18.4. Rulebase

Once the components, the fuzzy numbers are available, it is time to construct a rule
base. Alternatively, it can be said that it is time to construct the set of logical state-
ments that constitute our expert systems.
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18.4.1. Rulebase construction methods

There are essentially four different methodologies for the construction of a FLC rule
base.

18.4.1.1. Expert experience and control engineering knowledge

Fuzzy control rules have the form of fuzzy conditional statements that relate the state
oft he system variables in the antecedent — the if part — and process control variables
in the consequents — the then part .In our daily life, most of the information on which
our decisions are based comes to us in linguistic form rather than in numerical form.
You can drive your car home with a broken speedometer without trouble. From this
perspective, fuzzy logic rules provide a natural framework for the characterization of
human behavior and for capturing the reasoning employed in decisions analysis.

Many experts have expressed satisfaction with the way that a fuzzy control rule
captures their domain knowledge.

18.4.1.2. Operator’s control actions

The first commercial FLC was built for a cement kiln. This was controlled by a human
whose sole technological device was a piece of smoked glass used to peer at the kiln
during its cycle. In many such industrial man-machine control system, the input-
output relations are difficult to express in the form of differential equations or other
mathematical formalism used in classical control theory for modeling and simulation.
The human controller cannot express his actions with sufficient precision and no
scientist has performed a detailed physical analysis of the system’s components.

Yet a skilled human operators can control a cement kiln or other industrial systems
successfully without having any quantitative models in their mind. A human operator
employs, consciously or subconsciously, a set of rules to control the process. These
internal rules can be converted to fuzzy if-then statements using linguistic terms by
direct observation of the human controller’s actions in terms of the input-output op-
erating data. It should be noted that this can often take a lot of time to accomplish,
and is very difficult if the operator is not cooperating in the exposition.

18.4.1.3. Fuzzy model of a process

In the linguistic approach, the linguistic description of the dynamic characteristics of
a controlled process may be viewed as a fuzzy model of the process. This is what we
have developed in this chapter, a fuzzy model of a pendulum system.

Let us suppose that the pendulum is a little to the left and moving left. Then we
want to push it to the right. If it is moving fast to the left we push hard to the right,
if it is moving slowly to the left we push softly to the right.

Based on the fuzzy model, we can generate a set of fuzzy control rules for attaining
optimal performance of the dynamic system. The set of fuzzy control rules forms the
rule base of an FLC. Although this approach is somewhat more complicated, since
we must have some understanding of the system, it yields better performance and
reliability, and provides a FLC directly.
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18.4. Rulebase

18.4.1.4. Learning

Many fuzzy logic controllers have been built to emulate human decision-making be-
havior, but few are focused on human learning, namely, the ability to create fuzzy
control rules and to modify them based on experience.

The major attempts to build systems that learn fuzzy rules are based on Neural Net-
works and Genetic Algorithms (Available online at http://duck.creighton.edu/Fuzzy)).
Both of these methods are important enough to have their own chapter.

Example 108. With the linguistic terms of Table (18.2) we build a fuzzy model for
the pendulum.

Let us suppose that the pendulum is a little to the right and moving left. If it is
moving fast to the left we push medium to the right, if it is moving slowly to the
left we push softly to the right. An analysis of the system might produce the rules
presented in Table (18.3).

change in error
Pendulum ∆E 1 ∆E 2 ∆E3 ∆E 4 ∆E 5 ∆E 6 ∆E 7

Rules NB NM NS ZE PS PM PB

E1 NB PB PB PB PB PM PS ZE
E2 NM PB PM PM PM PS ZE NS
E3 NS PB PM PS PS ZE NS NM

error E4 ZE PB PM PS ZE NS NM NB
E5 PS PM PS ZE NS NS NM NB
E6 PM PS ZE NS NM NM NM NB
E7 PB ZE NS NM NB NB NB NB

Table 18.3.: Linguistic version of an Error-Delta-Error fuzzy controller rulebase

The table summarizes forty-nine rules. A typical example of a rule is

if e is NM and ∆e is PS then control is PS (18.2)

or
E2 ∧∆E5 → Z5 (18.3)

18.4.2. Larsen and Sugeno controllers

There is four important successful departure from the standard design of fuzzy con-
trollers that will be discussed in the following sections. Larsen controllers use the
king of fuzzy logic rules that are used in Mamadani controllers and were presented in
the previous chapter. Rules like A(x) ∧ B(y)→ C (z) where A, B, and C are fuzzy sets.
Since a fuzzy set is essentially a function, in a broad sense this rules can be written
A(x) ∧ B(y) → C [ω] (z) where ω is the compatibility of the antecedent A(x) ∧ B(y) with
the input vector 〈x0, y0〉. The result of this rule is a function Cω that maps the output
domain z to the unit intervals, Cω : Z → [0, 1]. In both the Mamdani and Larsen con-
troller Cω = C ∧ω. In a Mamdani controller and is modeled with min and in the Larsen
controller and is modeled with multiplication.
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Tsukamoto and Sugeno style controllers replace the consequent fuzzy sets C with
functions that are not necessarily fuzzy numbers. Tsukamoto use rules of the type
A(x) ∧ B(y) → Ck where Ck is an sigmoid function defined on the output space Z.
Sugeno proposed rules of the type A(x) ∧ B(y) → f (x, y) where f is an arbitrary func-
tion. In the Sugeno case f is a function from X×Y to the real numbers, f : X×Y → R.

Pendulum Y
Rules B1 B2 B3 B4 B5 B6 B7

A1 C7 C7 C7 C7 C6 C5 C4

A2 C7 C7 C6 C6 C5 C4 C3

A3 C7 C6 C5 C5 C4 C3 C2

X A4 C7 C6 C5 C4 C3 C2 C1

A5 C6 C5 C4 C3 C3 C2 C1

A6 C5 C4 C3 C2 C2 C1 C1

A7 C4 C3 C2 C1 C1 C1 C1

Table 18.4.: Abstract version of an Error-Delta-Error fuzzy controller rulebase

18.5. Representation

The third step in the design of a fuzzy controller is deciding on the fuzzy operators
that will be used to model the logical operators. The logical connectives are ˜, ∨, ∧,
and →. The standard interpretation is that negation, ˜, is complement and uses the
1−µ(x) operator, that logical or, ∨, is union and uses the max operator and that logical
and,∧, is intersection and uses the min operator. Remember that union or max is used
to amalgamate the outputs of each of the individual rules.

The success of fuzzy logic controllers has spurred researchers to examine a lot of
alternatives to the standard model for the logical connectives. This is usually done
by using a negation operator c for complements, a t-conorm for union and a t-norm
for intersection. Some researchers have tried fairly arbitrary operators for ∨ and ∧
including t-norms, t-conorms, and aggregation operators.

If we examine the control equations

Ci,j = [A′ ∧B′] ◦ [Ai ∧Bj ]→ Ck (18.4)

(see Eq. (17.6)) we see that in the original Mamdani FLC, as well as most production
controllers → is modeled with the t-norm min which is not properly an implication
operator (see Sec. (15.1)).

Mizumoto (1988) gives a thorough examination of using an arbitrary implication
operator i to model logical implication.

18.6. Inference

The FLC has at this stage been designed. It now needs to be applied, to be used,
so the next step is the firing of the rule base, or inference. This step produces the
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18.6. Inference

Figure 18.4.: Granulation with triangular fuzzy numbers.

Figure 18.5.: Granulation with triangular and trapezoidal fuzzy numbers.

Figure 18.6.: Standard granulation with fine control at the center (the target).
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18. Fuzzy Logic Controllers

consequent fuzzy set (or in the Sugeno type controllers a consequent real number).
This book has already presented two methods of using the compatibility indexes of

the antecedent to construct the consequent fuzzy set. In the Mamdani method the
min operator was used to truncate each consequent fuzzy set of a rule that fired. All of
these truncated output fuzzy sets were then amalgamated to produce a final resultant
fuzzy sets. An alternative was to use the product operator on the compatibility index
and the consequent fuzzy set to produce scaled output fuzzy sets.

Given an input vector 〈x0, y0〉 we construct the fuzzy set (relation) A′ ∧ B′. This is
typically an impulse fuzzy number which is one at 〈x0, y0〉 and zero elsewhere. We
then loop through every rule in the rulebase and calculate the individual results.

If we have a two-input—one-output controller then we loop on i and j where i goes
from 1 to the granularity of X and j goes from 1 to the granularity of Y . All of the
individual results are united, usually with the union operator max, but as mentioned
in the previous section, many fuzzy operators have been tried to model ∪. The result
is a single fuzzy set C.

C =
⋃
i,j

Ci,j (18.5)

=
⋃
i,j

([A′ ∧B′] ◦ [Ai ∧Bj ]→ Ck) (18.6)

In the Sugeno style FLC, the consequent of each implication is a real number, and
we do not need to construct the fuzzy impulse number A′ ∧ B′. Instead, we loop
through each rule and determine if 〈x0, y0〉 is in the support of the antecedent, if it is
we the rule fires and produces a real number ci,j instead of a fuzzy set Ci,j. In the
Sugeno system firing the rule looks like

ci,j = [Ai(x0) ∧Bj(y0)]→ ck (x0, y0) (18.7)

where ci,j = 0 if Ai(x0) ∧ Bj(y0) = 0, that is ci,j = 0 if 〈x0, y0〉 is not in the support
of Ai ∧ Bj. These real numbers are amalgamated with some function g (usually the
weighted average) that will be represented symbolically by ]. The result is a control
value, c, which is not a fuzzy set, and this result c does not need further processing,
i.e., defuzzification.

c =
⊎
i,j

ci,j (18.8)

=
⊎
i,j

([Ai(x0) ∧Bj(y0)]→ ck (x0, y0)) (18.9)

18.7. Defuzzification

If the design of the FLC results in a fuzzy set then the result is defuzzified. Many
defuzzification methods have been tried, but the most common methods are the cen-
ter of gravity, COG, and the median of maxima, MOM. However, as is typical in fuzzy
sets, these names are not standard. The MOM defuzzification method has a multi-
tude of names. The author of this book always has to find the actual equations used in
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other books and papers to determine precisely what defuzzification method is being
applied. is an empirical study of many defuzzification methods, including some novel
methods that try to balance speed and efficiency.

18.7.1. n input controllers

While both this and the previous chapter have focused on two-input—one-output
FLCs a fuzzy controller can be designed with any number of input variables. There
is always a single output since it is easier and faster to build many simple controllers
rather than design one very complex controller.

Suppose that here are m input values and one output control value. Then the input
looks like

x =
〈
x1 x2 · · · xi · · · xm

〉
(18.10)

where xi is an element of the variable domain Xi.
We assume that there are n rules in the rulebase. The values of n will be the less

than or equal to the granularity factors of each input variable. We assume that Ai,,j is
a fuzzy set defined on the input domain Xi and Cj is a fuzzy set defined on the output
space Z. Then rule j, Rj, will look like

Rj : A1,j ∧A2,j ∧ · · · ∧Ai,j ∧ · · · ∧Am,n → Cj (18.11)

or
Rj :

∧
i

Ai,j → Cj (18.12)

The compatibility index of input x with rule Rj is defined as ωj and

ωj = A1,j(x1) ∧A2,j(x2) ∧ · · · ∧Ai,j(xi) ∧ · · · ∧Am,n(xm) = (18.13)

=
∧
i

Ai,j(xi) . (18.14)

In the following section we will indicate how this expansion alters the results.

18.8. Examples

Inference and defuzzification can be best examined by looking at some of the con-
troller designs most common in theory and practice. We will in all the following
examples make the following assumptions. For the sake of simplicity and under-
standing the examples illustrations will always assume that there are two inputs and
that two fuzzy rules have non-zero compatibility indexes.

18.8.1. Mamdani

The fuzzy implication is modelled by Mamdani’s min operator and the sentence con-
nective also is interpreted as using a logical or between the propositions and defined
by the max operator Mamdani and Assilian (1975).
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18. Fuzzy Logic Controllers

For an input pair x = 〈x1, x2〉 that fires two rules, n = 2, in the rulebase we obtain

ω1 = A1,1(x1) ∧A2,1(x2) (18.15)

ω2 = A2,1(x1) ∧A2,2(x2) (18.16)

The individual rule outputs are obtained by

C1(z) = ω1 ∧ C1(z) (18.17)

C2(z) = ω2 ∧ C2(z) (18.18)

where Cj is the consequence of A1,j ∧ A2,,j, i.e., A1,j ∧ A2,,j → Cj is a member of the
rulebase, for j = 1, 2.

Then the overall system output is C1(z) ∨ C2(z).

Finally we can employ any defuzzification strategy to determine the actual control
action. Mamdami’s original controller used MoM.

If we have m input variables and n rules then the firing levels of the rules, ωj, are
computed using Eq.(18.13). The individual rule outputs are

Cj(z) = ωj ∧ Cj(z) (18.19)

where Cj is the consequence of A1,j ∧A2,j ∧ · · · ∧Am,j, i.e., A1,j ∧A2,j ∧ · · · ∧Am,j → Cj is
a member of the rulebase, for j = 1, 2, ...n. The overall rulebase output is the fuzzy set
C

C(z) =
∨
l

C ′kl(z) (18.20)

= max [ωkl ∧ Ckl(z)] (18.21)

which must be defuzzified.

Example 109. A simple illustration of a Mamdani controller.

Assume that A1,j ≡ Ej and A2,j ≡ ∆Ej are defined in Table (18.2) and that the
Sugeno controller has the rulebase as given in Table (18.4) where Cj is also defined
in Table (18.2). Finally suppose that x1 = 0.5 and x2 = −1.1. Two rules in the rulebase
will produce a nonzero compatibility index, they are:

Rule 1 If x is A1,5 and y is A2,1 then z is C6

Rule 2 If x is A1,5 and y is A2,2 then z is C5

Fact: x is 〈x1, x2〉 = 〈0.5,−1.1〉 .
Consequence: z′.
For an input pair x = 〈x1, x2〉 and n = 2 rules in the rulebase we calculate compati-

bility index values ω1 and ω2 where

ω1 = A1,1(x1) ∧A2,1(x2) (18.22)

ω2 = A1,1(x1) ∧A2,1(x2) . (18.23)
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Figure 18.7.: Mamdani controller.

Then according to Fig. (18.7) we see that

A1,5(x1) = 0.38, (18.24)

A2,1(x2) = 0.6. (18.25)

therefore, the compatibility index of the first rule is

ω1 = min [A1,5(x1), A2,1(x2)] (18.26)

= min [0.38, 0.6] (18.27)

= 0.38 (18.28)

and from

A1,5(x1) = 0.38, (18.29)

A2,2(x2) = 0.2 (18.30)

it follows that the compatibility index of the second rule is

ω2 = min [A1,5(x1), A2,2(x2)] (18.31)

= min [0.38, 0.2] (18.32)

= 0.2 (18.33)
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The fuzzy output of rule one is the fuzzy set whose membership function is

C ′6(z) = ω1 ∧ C6(z) (18.34)

= 0.38 ∧ C6(z) (18.35)

and the fuzzy output for rule two is the fuzzy set whose membership function is

C ′5(z) = ω2 ∧ C5(z) (18.36)

= 0.2 ∧ C5(z) . (18.37)

The final fuzzy output is the union of these two fuzzy sets,

C ′(z) = C ′6(z) ∪ C ′5(z) (18.38)

= (ω1 ∧ C6(z)) ∨ (ω2 ∧ C5(z)) (18.39)

= (0.38 ∧ C6(z)) ∨ (0.2 ∧ C5(z)) (18.40)

and this set is illustrated in the lower right had of Fig. (18.7).
The crisp output of the fuzzy controller is arrived at by determining that the height

of C ′ is 0.38 and that it attains this grade over the interval [8.09, 11.91] which has an
average value (midpoint) of

z′ = 10 (18.41)

so that this is the final output of the controller.

18.8.2. Larsen

In a Larsen style fuzzy controller, the compatability indices ωj are calculated iden-
tically with the Mamdani method. At this point the Larsen and Mamdani methods
diverge. In Mamdani’s model the logical connective → in the fuzzy if-then statement
is modeled with min and the consequent fuzzy sets end up truncated. In a Larsen
fuzzy controller the logical connective → in the fuzzy if-then statement is modeled
with the algebraic product t-norm and the consequent fuzzy sets are scaled instead
of truncated.

For an input pair x = 〈x1, x2〉 and n = 2 rules in the rulebase we calculate compati-
bility index values ω1 and ω2 where

ω1 = A1,1(x1) ∧A2,1(y) (18.42)

ω2 = A1,2(x) ∧A2,2(y) (18.43)

The individual rule outputs are the fuzzy sets Cj obtained by

C ′1 = ω1C1(z) (18.44)

C ′2 = ω2C2(z) (18.45)

Then membership function of the inferred consequence C is pointwise given by

C(z) = ω1C1(z) ∨ ω2C2(z). (18.46)
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Figure 18.8.: Larsen controller.

To obtain a deterministic control action, we employ any defuzzification strategy.
Usually this last step is replaced by the fast COG methodology described in Sec.
(17.4).

If we have m input variables and n rules then the compatibility index of the rules,
ωj, are computed using Eq.(18.13). The individual rule outputs are

C ′j(z) = ω1Cj(z) (18.47)

The overall system output is the fuzzy set C

C(z) =
∨
j

C ′j(z) (18.48)

= max
j

[ωjCj(z)] (18.49)

which must be defuzzified.

Example 110. We illustrate Larsen’s reasoning method by the following simple ex-
ample:

Assume that A1,j ≡ Ej and A2,j ≡ ∆Ej are defined in Table (18.2) and that the Larsen
controller has the rulebase as given in Table (18.4) where Cj is also defined in Table
(18.2). Finally suppose that x1 = 0.5 and x2 = −1.1. Two rules in the rulebase will
produce a nonzero compatibility index, they are:
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Rule 1 If x is A1,5 and y is A2,1 then z is C6

Rule 2 If x is A1,5 and y is A2,2 then z is C5

Fact: x is 〈x1, x2〉 = 〈0.5,−1.1〉 .
Consequence: z′.
Fig. (18.8) shows a pictorial representation of the Larsen process.
For an input pair x = 〈x1, x2〉 and n = 2 rules in the rulebase we calculate compati-

bility index values ω1 and ω2 where

ω1 = A1,1(x1) ∧A2,1(x2) (18.50)

ω2 = A1,1(x1) ∧A2,1(x2) . (18.51)

The result is ω1 = 0.38 and ω2 = 0.2.
The result is the fuzzy set

C ′(z) = ω1C6(z) ∨ ω2C5(z). (18.52)

= max [0.38× C6(z), 0.2× C5(z)] (18.53)

whose exact center of gravity is

z′ =

´
zC ′ (z) dz´
C ′ (z) dz

(18.54)

In this case the COG is
z′ = 8.24 (18.55)

The fast COG algorithm notes the CoGs of C6 is z1 = 10 and of C5 is z2 = 5. The fast
COG is just the weighted average of these values

z′ =
ω1z1 + ω2z2
ω2 + ω2

(18.56)

=
8× 0.38 + 5× 0.2

0.38 + 0.2
(18.57)

= 8.24 (18.58)

18.8.3. Tsukamoto

In Tsukamoto’s Tsukamoto (1979) model of a fuzzy controller, the significant differ-
ence is that all the consequent fuzzy sets Ck are modeled with monotonic s-shaped
membership functions. This construction ensures that these functions Ck are invert-
ible. Thus if we know a membership grade ω in a fuzzy set Ck then there is only one
domain value, z, that could have produced this value and ω = Ck(z), or in mathemati-
cal terms z = C−1k (ω).

For an input pair x = 〈x1, x2〉 and n = 2 rules in the rulebase we calculate compati-
bility index values ω1 and ω2 where

ω1 = A1,1(x1) ∧A2,1(x2) (18.59)

ω2 = A1,1(x1) ∧A2,1(x2) (18.60)
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In this mode of reasoning the individual crisp control actions z1 and z2 are computed
by solving the equations

ω1 = C1 (z1) (18.61)

ω2 = C2 (z2) (18.62)

for z1 and z2 respectively, which gives symbolically

z1 = C−11 (ω1) (18.63)

z2 = C−12 (ω2) (18.64)

The overall crisp control action is the weighted sum (the compatibility ωj is the
weight) of the individual rule consequents zj. The control value for two inputs is
z′ where

z′ =
ω1z1 + ω2z2
ω2 + ω2

(18.65)

If we have m input variables and n rules then the compatibility index of x with rule
Rl, ωl, is computed using Eq.(18.13). The crisp control action z is computed as

z′ =

∑n
j=1 ωjzj∑n
j=1 ωj

(18.66)

=

∑n
j=1 ωjC

−1
j (ωj)∑n

j=1 ωj
(18.67)

Example 111. We illustrate Tsukamoto’s reasoning method by the following simple
example:

Assume that A1,j ≡ Ej and A2,j ≡ ∆Ej are defined in Table (18.2) and that the Sugeno
controller has the rulebase as given in Table (18.4). In the case of the Tsukamoto
controller the consequents of the firing rules Cj are functions so we will suppose that
C6 (z) =

(
z−7
6

)2
for 7 ≤ z ≤ 13 and C5 (z) = z−2

6 for 2 ≤ z ≤ 8. Finally suppose that x1 = 0.5
and x2 = −1.1. Two rules in the rulebase will produce a nonzero compatibility index,
they are:

Rule 1 If x is A1,5 and y is A2,1 then z is C6

Rule 2 If x is A1,5 and y is A2,2 then z is C5

Fact: x is 〈x1, x2〉 = 〈0.5,−1.1〉 .
Consequence: z′.
See Fig. (18.9) for a pictorial representation of the following process.
For an input pair x = 〈x1, x2〉 and n = 2 rules in the rulebase we calculate compati-

bility index values ω1 and ω2 where

ω1 = A1,1(x1) ∧A2,1(x2) (18.68)

ω2 = A1,1(x1) ∧A2,1(x2) . (18.69)

The result is ω1 = 0.38 and ω2 = 0.2.
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Figure 18.9.: Tsukamoto controller.

The individual output of rule one is achieved by solving

C6 (z) = ω1 (18.70)

for z1. Solving (
z − 7

6

)2

= 0.38 (18.71)

gives
z1 = 7.79 (18.72)

The individual output of rule two is achieved by solving

C5 (z) = ω2 (18.73)

for z2. Solving
z − 2

6
= 0.2 (18.74)

gives
z2 = 3.2 (18.75)

The final output of the controller is the weighted sum of these z values where the
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weights are the compatibility indices.
The crisp control action is

z′ =
7.79× 0.38 + 3.2× 0.2

0.38 + 0.2
(18.76)

= 6.16 . (18.77)

18.8.4. Sugeno, Takagi, and Kang

Sugeno, Takagi and Kang (TSK) use an architecture Takagi and Sugeno (1985)Sugeno
and Kang (1988) that is significantly different from the previous methods. In their
system the consequents of the rules in the rule base are not fuzzy sets, instead they
are equations, usually linear, that use the values of the input variable to calculate
consequents.

Rule 1 If x1 is A1,1 and x2 is A2,1 then z1 = a1,1x1 + a1,2x2 + c1

Rule 2 If x1 is A2,1 and x2 is A2,2 then z2 = a2,1x1 + a2,2x2 + c2

We then fire the rule with a given input.
Fact; x is x0 and y is y0
Consequence: z0
The firing levels of the rules are computed in the standard way.

ω1 = A1(x) ∧B1(y) (18.78)

ω2 = A2(x) ∧B2(y) (18.79)

The individual rule outputs are derived from the relationships

z1 = a1x0 + b1y0 + c1, (18.80)

z2 = a2x0 + b2y0 + c2 (18.81)

and the crisp control action z is expressed as

z =
ω1z1 + ω2z2
ω1 + ω2

(18.82)

If we have m input variables and n rules then the compatibility index of x with rule
Rj, ωj, is computed using Eq.(18.13). Each of the n consequent zj has the form

zj = a1,jx1 + a2.jx2 + · · ·+ ai,jxi + · · ·+ am,jxm + cj (18.83)

=
m∑
i=1

ai,jxi + cj . (18.84)

If we have n rules in our rule-base then the crisp control action is computed as

z0 =

∑n
i=1 ωizi∑n
i=1 ωi

. (18.85)
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Figure 18.10.: Sugeno controller.

Example 112. We illustrate Sugeno’s reasoning method by the following simple ex-
ample:

Assume that A1,j ≡ Ej and A2,j ≡ ∆Ej are defined in Table (18.2) and that the
Sugeno controller has the rulebase as given in Table (18.4). In the case of the Sugeno
controller the consequents of the firing rules Cj are functions of x1 and x2. Suppose
that C6 (x1, x2) = 10x1 − 2x2 for and C5 (x1, x2) = 8x1 + x2. Finally suppose that x1 = 0.5
and x2 = −1.1. Two rules in the rulebase will produce a nonzero compatibility index,
they are:

Rule 1 If x is A1,5 and y is A2,1 then z = C6 (x1, x2).

Rule 2 If x is A1,5 and y is A2,2 then z = C5 (x1, x2).

Fact: x is 〈x1, x2〉 = 〈0.5,−1.1〉.
Consequence: z′.
See Fig. (18.10) for a pictorial representation of the following process.
For an input pair x = 〈x1, x2〉 and n = 2 rules in the rulebase we calculate compati-

bility index values ω1 and ω2 where

ω1 = A1,1(x1) ∧A2,1(x2) (18.86)

ω2 = A1,1(x1) ∧A2,1(x2) . (18.87)

The result is ω1 = 0.38 and ω2 = 0.2.
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The individual output of rule one is achieved by calculating

z1 = C6 (x1, x2) (18.88)

= 10x1 − 2x2 (18.89)

= 7.2 (18.90)

and the output of rule two is

z2 = C5 (x1, x2) (18.91)

= 8x1 + x2 (18.92)

= 2.9 (18.93)

The final output of the controller is the weighted sum of these z values where the
weights are the compatibility indices.

The crisp control action is

z′ =
7.2× 0.38 + 2.9× 0.2

0.38 + 0.2
(18.94)

= 5.68 . (18.95)

18.9. Fuzzy logic control design

1. Granulation

a) Determine the input data space and the output variable space.

b) If there are more than one output variable then divide the problem into
pieces and build a separate fuzzy controller for each output variable. This
reduces complexity and increases parallelism.

c) Determine the shapes that will be used by the controller.

d) Granulate the spaces.

2. Fuzzification

a) Associate each granule with a single fuzzy set and a single linguistic term.

b) These pieces must be sufficient to model the if and then parts of the rulebase.

3. Rulebase

a) Use available experts, input/output data, and mathematical models (if they
exist) to determine the rule base.

b) Use NN, GAs, fuzzy clustering, rule of thumb, and all manner of mathemat-
ical models to determine these rules and their associated fuzzy sets.

4. Operators

a) Match each logical connective in the rulebase with a fuzzy operator.

5. Inference
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a) The rules are run in parallel.

b) You get an input value vector x0.

c) Mamdani

i. Go through and find all rules where the if part of the rule has a positive
membership grade for x0. Call this membership grade the compatibility
index ωi for rule number i.

ii. Truncate (or scale) the then fuzzy set of the associated rule at the height
ωi.

iii. Amalgamate the individual results with the max operator.

d) Sugeno

i. Go through and find all rules where the if part of the rule has a positive
membership grade for x0. Call this membership grade the compatibility
index ωi for rule number i.

ii. Fire these rules and calculate the individual results. Call this result the
control index ci for rule number i.

iii. Amalgamate the individual results ci with the weighted average c =
∑
i ciωi∑
i ωi

.

6. Defuzzification

a) Mamdani originally used what he called maximum of membership. This
book uses the term median of membership.

b) Fast center of gravity is used in most real-world applications.

18.10. Notes

Takeshi Yamakawa, in Tokyo, 1987, demonstrated the use of fuzzy control, through a
set of simple dedicated fuzzy logic chips, in an “inverted pendulum” experiment. The
“inverted pendulum” experiment is a classic control problem.

The original fuzzy logic controller of Mamdani Mamdani and Assilian (1975) used
truncation of fuzzy sets by the compatability index and defuzzified using the mean of
maxima. The Larsen Larsen (1980) controller uses scaling by the compatability index
of truncation. The center of gravity method for defuzzification comes from Takagi and
Sugeno Takagi and Sugeno (1985).

Tsukamoto Tsukamoto (1979), abandons fuzzy sets on the right hand side of the
implications and substitutes monotone functions of the resultant compatibility index.

Sugeno, Takagi, and Kang Takagi and Sugeno (1985) Sugeno and Kang (1988) use
functions on the right hand side that use all the compatibility indexes and the input
data values from the if part of the control rules.

Homework

1. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈−0.1, .2〉
if we use a Mamdani system and the Rulebase of Table 18.4.
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2. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈−0.1, .2〉
if we use a Larsen system and the Rulebase of Table 18.4.

3. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈−0.1, .2〉
if we use a Tsukamoto system where for all k = 1 to 7 we set Ck (z) = z2 and the
Rulebase of Table 18.4.

4. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈−0.1, .2〉
if we use a Sugeno system where for all i = 1 to 7 we set Ck (x, y) = Ai(x)x+Bj(y)y
and the Rulebase of Table 18.4.

5. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈1, 1〉 if
we use a Mamdani system and the Rulebase of Table 18.4.

6. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈1, 1〉 if
we use a Larsen system and the Rulebase of Table 18.4.

7. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈1, 1〉
if we use a Tsukamoto system where for all k = 1 to 7 we set Ck (z) = z2 and the
Rulebase of Table 18.4.

8. What is the control value of the Pendulum Controller upon input 〈e,∆e〉 = 〈1, 1〉 if
we use a Sugeno system where for all i = 1 to 7 we set Ck (x, y) = Ai(x)x + Bj(y)y
and the Rulebase of Table 18.4.

9. Suggest some processes that a simple error – ∆error FLC could control.

10. Design a controller to stop an elevator at the tenth floor of a building with 20
floors.

11. Find an object in your home that uses a fuzzy logic controller.
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19. The Future Looks Fuzzy

A search at www.amazon.com for books on fuzzy sets in June, 2010 returned 1,909
hits. Besides control there are books applying fuzzy set theory to:

1. Social sciences

2. Image processing

3. Natural language

4. Managing uncertainty

5. Optimization

6. Economics

7. Decision making

8. Topology and algebra

9. Medicine

10. Data mining

These are just a few of the topics that one finds as one goes down the list of books
on fuzzy set theory and fuzzy logic. The fundamental idea of fuzzy set theory, that we
can abandon a dichotomous view of the world and instead see an infinite spectrum
of variations is a momentous paradigm change similar to the paradigm change when
probability was introduced. No one knows where we are headed.
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This chapter contains some mathematical resources that may be useful in under-
standing the text.

A.1. Calculus

Zeno’s paradox:

If you look at an arrow in flight, at a single instance in time the arrow is
at some location, and it appears at that instant the same as a motionless
arrow. Then how do we see motion?

Here is another one of those lovely paradoxes.

Suppose we take a ruler and divide in half. Then divide the halves into
halves, and keep repeating this division. If infinity exists then the process
never ends, the halves eventually disappear and then a ruler is made up of
pieces of nothing. Thus infinity cannot exist.

Infinity, ininitesimals, and infinite processes are the heart of calculus.
Think of the arrow as your car. When you are driving your car, the speedometer

tells you how fast you are going. But at the instant you glance at the speedometer,
you are at one place and velocity is distance traveled divided by time of travel. At the
exact moment of the glance there is no distance just location, and there is no time
duration. Thus the car cannot be moving Absurd. And even the speedometer knows
better, if it is not broken. It just shows you how fast you were going over the last
second and that is a pretty good estimate. If you want a better estimate, calculate
the velocity over the last 10th of a second, or 100th, etc.

If you want a detailed explanation, take a calculus class. The important point is that
in mathematics infinities appear and they are no problem. You can add up an infinite
number of nothings to get something. This infinite sum is called an integral. You can
also take an infinite series of approximations over smaller and smaller intervals and
see that the approximations usually pile up on an exact answer. This infinite ratio is
called a derivative.

The good thing is that both of these ideas have nice graphical interpretations.
If f is a function on the real numbers than the integral of f is the area between the

graph and the x axis (see Fig (A.2)) The notation for this is

ˆ b

a

f(x) dx

which means add up all the area under the function f from where x = a to where
x = b. Integrals are primarily important because the allow us to add up things over
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Figure A.1.: The derivative of the function f .

continuous domains like the real numbers. In addition, the integral has a nice phys-
ical meaning. If f is the velocity at time x then the integral is the distance traveled
form time a to time b.

The derivative is the instantaneous rate of change. Its graphical interpretation is
that it is the slope of the tangent line (see Fig. (A.1)). If the slope, the derivative,
is positive then the tangent is pointing up as we go to the right and the function is
increasing. If the slope is negative then the tangent is pointing down as we go to the
right and the function is decreasing. In addition, the derivative has a nice physical
meaning. If f is the distance at time x then the derivative of f is the velocity at time
x.

There are two notations for the derivative of a function f on the real numbers. They
are

df

dx
and f ′ (x)

depending on whether you like to do it the way Leibnitz or the way Newton described
it.

A.2. Fuzzy Measure Theory

Fuzzy measure theory must be clearly distinguished from fuzzy set theory. While the
latter is an outgrowth of classical set theory, the former is an outgrowth of classical
measure theory.

The two theories may be viewed as complementary in the following sense. In fuzzy
set theory, all objects of interest are precise and crisp; the issue is how much each
given object is compatible with the concept represented by a given fuzzy set. In
fuzzy measure theory, all considered sets are crisp, and the issue is the likelihood of
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Figure A.2.: The integral of the function f .

membership in each of these sets of an object whose characterization is imprecise
and, possibly, fuzzy. That is, while uncertainty in fuzzy set theory is associated with
boundaries of sets, uncertainty in fuzzy measure theory is associated with boundaries
of objects.

Given a universal set X and a non-empty family C of subsets of X (usually with an
appropriate algebraic structure), a fuzzy measure (or regular nonadditive measure),
g, on 〈X, C〉 is a function

g : C → [0, 1] (A.1)

that satisfies the following requirements:

(g1) Boundary conditions — g(∅) = 0 when ∅ ∈ C and g(X) = 1 when X ∈ C.

(g2) Monotonicity — for all A,B ∈ C, if A ⊆ B, then g(A) ≤ g(B).

(g3) Continuity from below — for any increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of sets
in C, if

⋃∞
i=1Ai ∈ C then

lim
i→∞

g(Ai) = g(
∞⋃
i=1

Ai). (A.2)

(g4) Continuity from above — for any decreasing sequence A1 ⊇ A2 ⊇ A3 ⊇ . . . of sets
in C, if

⋂∞
i=1Ai ∈ C then

lim
i→∞

g(Ai) = g(

∞⋂
i=1

Ai). (A.3)

A few remarks regarding this definition are needed. First, functions that satisfy re-
quirements (g1), (g2) and only one of the requirements (g3) and (g4) are equally
important in fuzzy set theory. If only (g3) is satisfied, the function is called a lower
semicontinuous fuzzy measure; if only (g4) is satisfied, it is called an upper semicon-
tinuous fuzzy measure. Secondly, when the universal set X is finite, requirements
(g3) and (g4) are trivially satisfied and may thus be disregarded. Third, it is some-
times needed to define fuzzy measures in a more general way by extending the range
of function g to the set of all nonnegative real numbers and excluding the second
boundary condition g(X) = 1. This generalization is not applicable when fuzzy mea-
sures are utilized for characterizing uncertainty. Fourth, in this book, C is assumed
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to be a σ–algebra: X ∈ C, and if A,B ∈ C, then A ∪ B ∈ C and A− B ∈ C. In most cases,
C is the power set, P(X), of X.

We can see that fuzzy measures, as defined here, are generalizations of probability
measures [Billingsley, 1986] or, when conceived in the broader sense, they are gen-
eralizations of classical measures [Halmos, 1950]. In either case, the generalization
is obtained by replacing the additivity requirement with the weaker requirements
of monotonicity and continuity or, at least, semicontinuity. This generalization was
first conceived by Sugeno [1974]. A comprehensive and up-to-date introduction to
fuzzy measure theory is the subject of a graduate text by Wang and Klir [1992]. Vari-
ous aspects of fuzzy measure theory are also covered in books by Denneberg [1994],
Grabisch et al. [1995], and Pap [1995].

Our primary interest in this book does not involve the full scope of fuzzy measure
theory, but only three of its branches: evidence theory, probability theory, and pos-
sibility theory. Relevant properties of these theories are introduced in the rest of
this chapter. Fuzzy measure theory is covered here because it represents a broad,
unifying framework for future research regarding uncertainty-based information.

One additional remark should be made. Fuzzy measure theory, as well as any of its
branches, may be combined with fuzzy set theory. That is, function g characterizing
a fuzzy measure may be defined on fuzzy sets rather than crisp sets [Wang and Klir,
1992].

A.3. Generating Functions

The next set of results exposes the relationship between t-norms, t-conorms and com-
plements. Most t-norms, t-conorms and complements can be generated using an
increasing or decreasing function as appropriate. We start with the simplest

Theorem 13 (First Characterization Theorem of Fuzzy Complements). Let c be a
function from [0, 1] to [0, 1]. Then, c is an involutive fuzzy complement iff there exists a
continuous function g from [0, 1] on R such that g(0) = 0, g is strictly increasing, and

c(a) = g−1(g(1)− g(a)) (A.4)

where g−1 is the inverse of g for all a in [0, 1].

Functions g are usually called increasing generators. Each function that qualifies as
an increasing generator determines an involutive fuzzy complement by the equation
above.

For a Standard Fuzzy Complement the increasing generator is

g(a) = a. (A.5)

For the Sugeno class of complements the increasing generator is

gλ(a) =
1

λ
ln(1 + λa) (A.6)

with λ > −1.
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Figure A.3.: Schweizer and Sklar t-norm and t-conorm functions for p = 2.

For the Yager class of complements,

gw(a) = aw (A.7)

with w > 0.
We can combine these to give a double parameterized increasing generator:

gλ,w(a) =
1

λ
ln (1 + λaw) (A.8)

with λ > −1 and w > 0. This yields

cλ,w(a) =

(
1− aw

1 + λaw

)1/w

(A.9)

which contains both the Sugeno class and the Yager class as special subclasses.
As one more example, the increasing generator

gγ(a) =
a

γ + (1− γ)a
(A.10)

with γ > 0 produces the class of involutive fuzzy complements

cγ(a) =
γ2(1− a)

a+ γ2(1− a)
(A.11)

with γ > 0.
Involutive fuzzy complements can also be produced by decreasing generators.

Theorem 14. [Second Characterization Theorem of Fuzzy Complements]Let c be a
function form [0, 1] to [0, 1]. Then c is an involutive fuzzy complement iff there exists
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a continuous function f from [0, 1] to R such that f(1) = 0, f is strictly decreasing,
and c(a) = f−1(f(0)− f(a)), f−1 is the inverse of f for all a in [0, 1].

For a Standard Fuzzy Complement the decreasing generators is,

f(a) = −ka+ k (A.12)

for all k > 0.
For the Yager class of complements the generating function is,

fw(a) = 1− aw (A.13)

with w > 0.
The pseudo-inverse of a decreasing generator f , denoted f (−1), is a function from

R to [0, 1] given by

f (−1)(a) =

 1 for a ∈ (−∞, 0)
f−1(a) for a ∈ [0, f(0)]
0 for a ∈ (f(0),∞)

(A.14)

Some examples of generating functions are

f1(a) = 1− ap with a ∈ [0, 1] and p > 0 (A.15)

f2(a) = − ln a with a ∈ [0, 1] and f2(0) =∞. (A.16)

These functions have pseudo-inverses

f
(−1)
1 (a) =


1 for a ∈ (−∞, 0)
(1− a)1/p for a ∈ [0, 1]
0 for a ∈ (1,∞)

(A.17)

and

f
(−1)
2 (a) =

{
1 for a ∈ (−∞, 0)
e−a for a ∈ [0,∞)

. (A.18)

A decreasing generator and its pseudo-inverse satisfy f (−1)(f(a)) = a for any a in
[0, 1] and

f
(
f (−1)(a)

)
=

 0 for a ∈ (−∞, 0)
a for a ∈ [0, f(0)]
f(0) for a ∈ (f(0),∞)

(A.19)

The pseudo-inverse of an increasing generator g, denoted g(−1), is a function from
R to [0, 1] defined by

g(−1)(a) =

 0 for a ∈ (−∞, 0)
g−1(a) for a ∈ [0, g(1)]
1 for a ∈ (g(1),∞)

(A.20)

Some examples are

g1(a) = ap with a ∈ [0, 1] and p > 0 (A.21)

g2(a) = − ln (1− a) with a ∈ [0, 1] and g2(1) =∞. (A.22)
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Figure A.4.: Yager t-norm and t-conorm functions for p = 2.

g1(a) = ap(p > 0) (A.23)

These functions have pseudo-inverses

g
(−1)
1 (a) =


0 for a ∈ (−∞, 0)
a1/p for a ∈ [0, 1]
1 for a ∈ (1,∞)

(A.24)

and

g
(−1)
2 (a) =

{
1 for a ∈ (−∞, 0)
1− e−a for a ∈ [0,∞)

. (A.25)

A decreasing generator and its pseudo-inverse satisfy g(−1)(g(a)) = a for any a in
[0, 1] and

g
(
g(−1)(a)

)
=

 0 for a ∈ (−∞, 0)
a for a ∈ [0, g(1)]
g(1) for a ∈ (g(1),∞)

(A.26)

Lemma 3. Let f by a decreasing generator. Then a function g defined by g(a) =
f(0)− f(a) for any a in [0, 1] is an increasing generator with g(1) = f(0), and its pseudo-
inverse g(−1) is given by

g(−1)(a) = f (−1)(f(0)− a) (A.27)

for any a in R.

Lemma 4. Let g be an increasing generator. Then a function f defined by f(a) =
g(1) − g(a) for any a in [0, 1] is a decreasing generator with f(0) = g(1), and its
pseudo-inverse f (−1) is given by

f (−1)(a) = g(−1)(g(1)− a) (A.28)
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for any a in R.

Theorem 15. [Characterization Theorem of t-norms]Let t be a binary operation on
the unit interval. Then, t is an Archimedean t-norm iff there exists a decreasing
generator f such that

t(a, b) = f (−1)(f(a) + f(b)) (A.29)

for all a, b in [0, 1].

Theorem 16. [Characterization Theorem of t-conorms]Let s be a binary operation
on the unit interval. Then, s is an Archimedean t-conorm iff there exists an increasing
generator g such that

t(a, b) = g(−1)(g(a) + g(b)) (A.30)

for all a, b in [0, 1].

Below are various examples.

Example 113. [Schweizer and Sklar]Schweizer and Sklar (1963) The class of de-
creasing generators parameterized by p

fp(a) = 1− ap (A.31)

where p is not 0 generate the pseudo-inverse

f (−1)p (z) =


1 for z ∈ (−∞, 0)

(1− z)1/p for z ∈ [0, 1]
0 for z ∈ (1,∞)

This pseudo-inverse in turn generates the following t-norm

tp(a, b) = f (−1)p (fp(a) + fp(b)) (A.32)

= f (−1)p (2− ap − bp)

=

{
(ap + bp − 1)1/p 2− ap − bpis in [0, 1]
0 otherwise

= max
[
0, (ap + bp − 1)1/p

]
Example 114. [Yager]Yager (1980) The class of decreasing generators parameter-
ized by w

fw(a) = (1− a)w (A.33)

where w > 0 generate the pseudo-inverse

f (−1)w (z) =


1 for z ∈ (−∞, 0)
1− z1/w for z ∈ [0, 1]
0 for z ∈ (1,∞)

(A.34)
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This pseudo-inverse in turn generates the following t-norm

tw(a, b) = f (−1)w (fw(a) + fw(b)) (A.35)

= f (−1)w ((1− a)w + (1− b)w)

=

{
1− ((1− a)w + (1− b)w)1/w (1− a)w + (1− b)wis in [0, 1]
0 otherwise

= 1−mtn(1, [(1− a)w + (1− b)w]1/w)

Example 115. [Frank]Frank (1979) The class of decreasing generators parameter-
ized by s

fs(a) = −lns
a − 1

s− 1

withs > 0 and s is not equal to1 generate the pseudo-inverse

f (−1)(z) = log(s)(1 + (s− 1)e−z) (A.36)

This pseudo-inverse in turn generates the following t-norm

ts(a, b)) = f (−1)s (fs(a) + fs(b)) (A.37)

= f (−1)s

(
−ln (sa − 1)(sb − 1)

(s− 1)
2

)

= logs

[
1 + (s− 1)

(sa − 1)(sb − 1)

(s− 1)2

]
= logs

[
1 +

(sa − 1)(sb − 1)

s− 1

]
The Yager class of t-norms

tw(a, b) = 1−min
[
1, ((1− a)w + (1− b)w)

1/w
]

with w > 0 (A.38)

covers the full range of t-norms expressed in the following Theorem.

Theorem 17. Let tw denote the class of Yager t-norms defined above, then

tmin(a, b) <= tw(a, b) <= min(a, b) (A.39)

For detailed proofs of all these results see Klir and Yuan (1996).
A host of t-norms have been proposed to deal with specific problems. A selection

of some well-known parametric classes of t-norms are given in Table (A.1). Various
procedures are now available for obtaining these and other classes of t-norms. Var-
ious experimental procedures are available to select the appropriate t-norm for a
particular application Klir and Yuan (1996).

A host of t-conorms have been proposed to deal with specific problems. Some well
known parameterized classes of t-conorms are given in Table A.2.
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Table A.1.: Some classes of t-norms

Formula Parameter
Originator
Year

tmin

[max(0, ap + bp − 1)]
1
p p 6= 0

Schweizer&Sklar
1983

ab

γ + (1− γ)(a+ b− ab) γ ∈ (0,∞)
Hamacher
1978

logs

[
1 +

(sa − 1)
(
sb − 1

)
s− 1

]
s ∈ (0,∞),

s 6= 1

Frank
1979

1−min
[
1, ((1− a)w + (1− a)w)

1
w

]
w ∈ (0,∞)

Yager
1980a

ab

max(a, b, α)
α ∈ [0, 1]

Dubois&Prade
1980b

[
1 +

[(
1
a
− 1
)λ

+
(
1
b
− 1
)λ] 1

λ

]−1

λ ∈ (0,∞)
Dombi
1982
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Table A.2.: Some classes of t-conorms

Formula Parameter
Originator
Year

smax

1− [max(0, (1− a)p + (1− b)p − 1)]
1
p p 6= 0

Schweizer&Sklar
1983

a+ b− (γ − 2)ab

1 + (γ − 1)ab
γ ∈ (0,∞)

Hamacher
1978

1− logs

[
1 +

(
s1−a − 1

) (
s1−b − 1

)
s− 1

]
s ∈ (0,∞),

s 6= 1

Frank
1979

min
[
1, (aw + bw)

1
w

]
w ∈ (0,∞)

Yager
1980a

1− (1− a)(1− b)
max(a, b, 1− α) α ∈ [0, 1]

Dubois&Prade
1980b

[
1 +

[(
1
a
− 1
)−λ

+
(
1
b
− 1
)−λ]− 1

λ

]−1

λ ∈ (0,∞)
Dombi
1982
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